Enter an equation or problem
Camera input is not recognized!

Solution - Adding, subtracting and finding the least common multiple

x0.063991692
x≓-0.063991692

Step by Step Solution

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "0.00523224" was replaced by "(00523224/100000000)". 3 more similar replacement(s)

Step by step solution :

Step  1  :

              65403 
 Simplify   ————————
            12500000

Equation at the end of step  1  :

          34545          1352       65403 
  (((x3)+(—————•(x2)))+(—————•x))-————————  = 0 
          10000         10000     12500000

Step  2  :

             169
 Simplify   ————
            1250

Equation at the end of step  2  :

          34545          169       65403 
  (((x3)+(—————•(x2)))+(————•x))-————————  = 0 
          10000         1250     12500000

Step  3  :

6909 Simplify ———— 2000

Equation at the end of step  3  :

             6909           169x       65403 
  (((x3) +  (———— • x2)) +  ————) -  ————————  = 0 
             2000           1250     12500000

Step  4  :

Equation at the end of step  4  :

            6909x2     169x       65403 
  (((x3) +  ——————) +  ————) -  ————————  = 0 
             2000      1250     12500000

Step  5  :

Rewriting the whole as an Equivalent Fraction :

 5.1   Adding a fraction to a whole

Rewrite the whole as a fraction using  2000  as the denominator :

           x3     x3 • 2000
     x3 =  ——  =  —————————
           1        2000   

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 5.2       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 x3 • 2000 + 6909x2     2000x3 + 6909x2
 ——————————————————  =  ———————————————
        2000                 2000      

Equation at the end of step  5  :

   (2000x3 + 6909x2)    169x       65403 
  (————————————————— +  ————) -  ————————  = 0 
         2000           1250     12500000

Step  6  :

Step  7  :

Pulling out like terms :

 7.1     Pull out like factors :

   2000x3 + 6909x2  =   x2 • (2000x + 6909) 

Calculating the Least Common Multiple :

 7.2    Find the Least Common Multiple

      The left denominator is :       2000 

      The right denominator is :       1250 

        Number of times each prime factor
        appears in the factorization of:
 Prime 
 Factor 
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
2414
5344
 Product of all 
 Prime Factors 
2000125010000


      Least Common Multiple:
      10000 

Calculating Multipliers :

 7.3    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 5

   Right_M = L.C.M / R_Deno = 8

Making Equivalent Fractions :

 7.4      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

   L. Mult. • L. Num.      x2 • (2000x+6909) • 5
   ——————————————————  =   —————————————————————
         L.C.M                     10000        

   R. Mult. • R. Num.      169x • 8
   ——————————————————  =   ————————
         L.C.M              10000  

Adding fractions that have a common denominator :

 7.5       Adding up the two equivalent fractions

 x2 • (2000x+6909) • 5 + 169x • 8     10000x3 + 34545x2 + 1352x
 ————————————————————————————————  =  —————————————————————————
              10000                             10000          

Equation at the end of step  7  :

  (10000x3 + 34545x2 + 1352x)      65403 
  ——————————————————————————— -  ————————  = 0 
             10000               12500000

Step  8  :

Step  9  :

Pulling out like terms :

 9.1     Pull out like factors :

   10000x3 + 34545x2 + 1352x  =   x • (10000x2 + 34545x + 1352) 

Trying to factor by splitting the middle term

 9.2     Factoring  10000x2 + 34545x + 1352 

The first term is,  10000x2  its coefficient is  10000 .
The middle term is,  +34545x  its coefficient is  34545 .
The last term, "the constant", is  +1352 

Step-1 : Multiply the coefficient of the first term by the constant   10000 • 1352 = 13520000 

Step-2 : Find two factors of  13520000  whose sum equals the coefficient of the middle term, which is   34545 .


Numbers too big. Method shall not be applied

Calculating the Least Common Multiple :

 9.3    Find the Least Common Multiple

      The left denominator is :       10000 

      The right denominator is :       12500000 

        Number of times each prime factor
        appears in the factorization of:
 Prime 
 Factor 
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
2455
5488
 Product of all 
 Prime Factors 
100001250000012500000


      Least Common Multiple:
      12500000 

Calculating Multipliers :

 9.4    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1250

   Right_M = L.C.M / R_Deno = 1

Making Equivalent Fractions :

 9.5      Rewrite the two fractions into equivalent fractions

   L. Mult. • L. Num.      x • (10000x2+34545x+1352) • 1250
   ——————————————————  =   ————————————————————————————————
         L.C.M                         12500000            

   R. Mult. • R. Num.        65403 
   ——————————————————  =   ————————
         L.C.M             12500000

Adding fractions that have a common denominator :

 9.6       Adding up the two equivalent fractions

 x • (10000x2+34545x+1352) • 1250 - (65403)     12500000x3 + 43181250x2 + 1690000x - 65403
 ——————————————————————————————————————————  =  ——————————————————————————————————————————
                  12500000                                       12500000                 

Checking for a perfect cube :

 9.7    12500000x3 + 43181250x2 + 1690000x - 65403  is not a perfect cube

Trying to factor by pulling out :

 9.8      Factoring:  12500000x3 + 43181250x2 + 1690000x - 65403 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  43181250x2 - 65403 
Group 2:  12500000x3 + 1690000x 

Pull out from each group separately :

Group 1:   (14393750x2 - 21801) • (3)
Group 2:   (1250x2 + 169) • (10000x)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 9.9    Find roots (zeroes) of :       F(x) = 12500000x3 + 43181250x2 + 1690000x - 65403
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  12500000  and the Trailing Constant is  -65403.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,4 ,5 ,8 ,10 ,16 ,20 ,25 ,32 , etc
 
of the Trailing Constant :  1 ,3 ,9 ,13 ,39 ,43 ,117 ,129 ,169 ,387 , etc

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00     28925847.00   
     -1     2      -0.50     8322409.50   
     -1     4      -0.25     2015612.62   
     -1     5      -0.20     1223847.00   
     -1     8      -0.12     373639.97   


Note - For tidiness, printing of 195 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Equation at the end of step  9  :

  12500000x3 + 43181250x2 + 1690000x - 65403
  ——————————————————————————————————————————  = 0 
                   12500000                 

Step  10  :

When a fraction equals zero :

 10.1    When a fraction equals zero ...

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.

Here's how:

  12500000x3+43181250x2+1690000x-65403
  ———————————————————————————————————— • 12500000 = 0 • 12500000
                12500000              

Now, on the left hand side, the  12500000  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   12500000x3+43181250x2+1690000x-65403  = 0

Cubic Equations :

 10.2     Solve   12500000x3+43181250x2+1690000x-65403 = 0

Future releases of Tiger-Algebra will solve equations of the third degree directly.

Meanwhile we will use the Bisection method to approximate one real solution.

Approximating a root using the Bisection Method :

We now use the Bisection Method to approximate one of the solutions. The Bisection Method is an iterative procedure to approximate a root (Root is another name for a solution of an equation).

The function is   F(x) = 12500000x3 + 43181250x2 + 1690000x - 65403

At   x=   -4.00   F(x)  is equal to -115925403.00 
At   x=   -3.00   F(x)  is equal to  45995847.00 

Intuitively we feel, and justly so, that since  F(x)  is negative on one side of the interval, and positive on the other side then, somewhere inside this interval,  F(x)  is zero

Procedure :
(1) Find a point "Left" where F(Left) < 0

(2) Find a point 'Right' where F(Right) > 0

(3) Compute 'Middle' the middle point of the interval [Left,Right]

(4) Calculate Value = F(Middle)

(5) If Value is close enough to zero goto Step (7)

Else :
If Value < 0 then : Left <- Middle
If Value > 0 then : Right <- Middle

(6) Loop back to Step (3)

(7) Done!! The approximation found is Middle

Follow Middle movements to understand how it works :

    Left       Value(Left)     Right       Value(Right)

-4.000000000 -115925403.00 -3.000000000   45995847.00
 0.000000000     -65403.00 -3.000000000   45995847.00
 0.000000000     -65403.00 -1.500000000   52369909.50
 0.000000000     -65403.00 -0.750000000   17683112.62
 0.000000000     -65403.00 -0.375000000    4714030.59
 0.000000000     -65403.00 -0.187500000    1053415.36
 0.000000000     -65403.00 -0.093750000     145382.52
-0.046875000     -51028.53 -0.093750000     145382.52
-0.046875000     -51028.53 -0.070312500      24905.22
-0.058593750     -18689.95 -0.070312500      24905.22
-0.058593750     -18689.95 -0.064453125       1708.103
-0.061523438      -8841.750 -0.064453125       1708.103
-0.062988281      -3654.412 -0.064453125       1708.103
-0.063720703 -995.036483868 -0.064453125       1708.103
-0.063720703 -995.036483868 -0.064086914  351.064696193
-0.063903809 -323.353312732 -0.064086914  351.064696193
-0.063903809 -323.353312732 -0.063995361   13.513865784
-0.063949585 -155.005183558 -0.063995361   13.513865784
-0.063972473  -70.767023458 -0.063995361   13.513865784
-0.063983917  -28.631919924 -0.063995361   13.513865784
-0.063989639   -7.560362335 -0.063995361   13.513865784
-0.063989639   -7.560362335 -0.063992500    2.976417909
-0.063991070   -2.292055667 -0.063992500    2.976417909
-0.063991070   -2.292055667 -0.063991785    0.342160258
-0.063991427   -0.974952920 -0.063991785    0.342160258
-0.063991606   -0.316397635 -0.063991785    0.342160258
-0.063991606   -0.316397635 -0.063991696    0.012880986
-0.063991651   -0.151758406 -0.063991696    0.012880986
-0.063991673   -0.069438731 -0.063991696    0.012880986
-0.063991684   -0.028278878 -0.063991696    0.012880986
-0.063991690   -0.007698947 -0.063991696    0.012880986
-0.063991690   -0.007698947 -0.063991693    0.002591019
-0.063991691   -0.002553964 -0.063991693    0.002591019
-0.063991691   -0.002553964 -0.063991692    0.000018527
-0.063991692   -0.001267719 -0.063991692    0.000018527
-0.063991692   -0.000624596 -0.063991692    0.000018527
-0.063991692   -0.000303034 -0.063991692    0.000018527
-0.063991692   -0.000142254 -0.063991692    0.000018527
-0.063991692   -0.000061863 -0.063991692    0.000018527
-0.063991692   -0.000021668 -0.063991692    0.000018527
-0.063991692   -0.000001570 -0.063991692    0.000018527
-0.063991692   -0.000001570 -0.063991692    0.000008478


     Next Middle will get us close enough to zero:

     F( -0.063991692 ) is   0.000000942  

     The desired approximation of the solution is:

       x ≓ -0.063991692

     Note, ≓ is the approximation symbol

One solution was found :

                         x ≓ -0.063991692

Why learn this

Latest Related Drills Solved