Enter an equation or problem
Camera input is not recognized!

Solution - Factoring binomials using the difference of squares

x=3
x=-3
x=4
x=4
x=4
x=-4

Step by Step Solution

Step by step solution :

Step  1  :

Equation at the end of step  1  :

  (((x3) +  3x2) -  16x) -  48  = 0 

Step  2  :

Checking for a perfect cube :

 2.1    x3+3x2-16x-48  is not a perfect cube

Trying to factor by pulling out :

 2.2      Factoring:  x3+3x2-16x-48 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x3+3x2 
Group 2:  -16x-48 

Pull out from each group separately :

Group 1:   (x+3) • (x2)
Group 2:   (x+3) • (-16)
               -------------------
Add up the two groups :
               (x+3)  •  (x2-16) 
Which is the desired factorization

Trying to factor as a Difference of Squares :

 2.3      Factoring:  x2-16 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check : 16 is the square of 4
Check :  x2  is the square of  x1 

Factorization is :       (x + 4)  •  (x - 4) 

Equation at the end of step  2  :

  (x + 4) • (x - 4) • (x + 3)  = 0 

Step  3  :

Theory - Roots of a product :

 3.1    A product of several terms equals zero. 

 
When a product of two or more terms equals zero, then at least one of the terms must be zero. 

 
We shall now solve each term = 0 separately 

 
In other words, we are going to solve as many equations as there are terms in the product 

 
Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation :

 3.2      Solve  :    x+4 = 0 

 
Subtract  4  from both sides of the equation : 
 
                     x = -4

Solving a Single Variable Equation :

 3.3      Solve  :    x-4 = 0 

 
Add  4  to both sides of the equation : 
 
                     x = 4

Solving a Single Variable Equation :

 3.4      Solve  :    x+3 = 0 

 
Subtract  3  from both sides of the equation : 
 
                     x = -3

Three solutions were found :

  1.  x = -3
  2.  x = 4
  3.  x = -4

Why learn this

Latest Related Drills Solved