Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(x+1)(x2)(x4)(x6)
(x+1)*(x-2)*(x-4)*(x-6)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  ((((x4)-(11•(x3)))+25x2)-4x)-48

Step  2  :

Equation at the end of step  2  :

  ((((x4) -  11x3) +  25x2) -  4x) -  48

Step  3  :

Polynomial Roots Calculator :

 3.1    Find roots (zeroes) of :       F(x) = x4-11x3+32x2-4x-48
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -48.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,8 ,12 ,16 ,24 ,48

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      0.00    x+1 
     -2     1      -2.00      192.00   
     -3     1      -3.00      630.00   
     -4     1      -4.00      1440.00   
     -6     1      -6.00      4800.00   
     -8     1      -8.00     11760.00   
     -12     1     -12.00     44352.00   
     -16     1     -16.00     118800.00   
     -24     1     -24.00     502320.00   
     -48     1     -48.00     6598800.00   
     1     1      1.00      -30.00   
     2     1      2.00      0.00    x-2 
     3     1      3.00      12.00   
     4     1      4.00      0.00    x-4 
     6     1      6.00      0.00    x-6 
     8     1      8.00      432.00   
     12     1      12.00      6240.00   
     16     1      16.00     28560.00   
     24     1      24.00     198000.00   
     48     1      48.00     4165392.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x4-11x3+32x2-4x-48 
can be divided by 4 different polynomials,including by  x-6 

Polynomial Long Division :

 3.2    Polynomial Long Division
Dividing :  x4-11x3+32x2-4x-48 
                              ("Dividend")
By         :    x-6    ("Divisor")

dividend  x4 - 11x3 + 32x2 - 4x - 48 
- divisor * x3   x4 - 6x3       
remainder  - 5x3 + 32x2 - 4x - 48 
- divisor * -5x2   - 5x3 + 30x2     
remainder      2x2 - 4x - 48 
- divisor * 2x1       2x2 - 12x   
remainder        8x - 48 
- divisor * 8x0         8x - 48 
remainder         0

Quotient :  x3-5x2+2x+8  Remainder:  0 

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = x3-5x2+2x+8

     See theory in step 3.1
In this case, the Leading Coefficient is  1  and the Trailing Constant is  8.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4 ,8

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      0.00    x+1 
     -2     1      -2.00      -24.00   
     -4     1      -4.00      -144.00   
     -8     1      -8.00      -840.00   
     1     1      1.00      6.00   
     2     1      2.00      0.00    x-2 
     4     1      4.00      0.00    x-4 
     8     1      8.00      216.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x3-5x2+2x+8 
can be divided by 3 different polynomials,including by  x-4 

Polynomial Long Division :

 3.4    Polynomial Long Division
Dividing :  x3-5x2+2x+8 
                              ("Dividend")
By         :    x-4    ("Divisor")

dividend  x3 - 5x2 + 2x + 8 
- divisor * x2   x3 - 4x2     
remainder  - x2 + 2x + 8 
- divisor * -x1   - x2 + 4x   
remainder    - 2x + 8 
- divisor * -2x0     - 2x + 8 
remainder       0

Quotient :  x2-x-2  Remainder:  0 

Trying to factor by splitting the middle term

 3.5     Factoring  x2-x-2 

The first term is,  x2  its coefficient is  1 .
The middle term is,  -x  its coefficient is  -1 .
The last term, "the constant", is  -2 

Step-1 : Multiply the coefficient of the first term by the constant   1 • -2 = -2 

Step-2 : Find two factors of  -2  whose sum equals the coefficient of the middle term, which is   -1 .

     -2   +   1   =   -1   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -2  and  1 
                     x2 - 2x + 1x - 2

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x • (x-2)
              Add up the last 2 terms, pulling out common factors :
                     1 • (x-2)
Step-5 : Add up the four terms of step 4 :
                    (x+1)  •  (x-2)
             Which is the desired factorization

Final result :

  (x + 1) • (x - 2) • (x - 4) • (x - 6)

Why learn this

Latest Related Drills Solved