Solution - Finding the roots of polynomials
Other Ways to Solve
Finding the roots of polynomialsStep by Step Solution
Step 1 :
256
Simplify ———
x2
Equation at the end of step 1 :
256 ((((x4)-(16•(x2)))-———)+4x)+16 x2Step 2 :
Equation at the end of step 2 :
256
((((x4) - 24x2) - ———) + 4x) + 16
x2
Step 3 :
Rewriting the whole as an Equivalent Fraction :
3.1 Subtracting a fraction from a whole
Rewrite the whole as a fraction using x2 as the denominator :
x4 - 16x2 (x4 - 16x2) • x2
x4 - 16x2 = ————————— = ————————————————
1 x2
Equivalent fraction : The fraction thus generated looks different but has the same value as the whole
Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
Step 4 :
Pulling out like terms :
4.1 Pull out like factors :
x4 - 16x2 = x2 • (x2 - 16)
Trying to factor as a Difference of Squares :
4.2 Factoring: x2 - 16
Theory : A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B)
Proof : (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 - AB + AB - B2 =
A2 - B2
Note : AB = BA is the commutative property of multiplication.
Note : - AB + AB equals zero and is therefore eliminated from the expression.
Check : 16 is the square of 4
Check : x2 is the square of x1
Factorization is : (x + 4) • (x - 4)
Adding fractions that have a common denominator :
4.3 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
x2 • (x+4) • (x-4) • x2 - (256) x6 - 16x4 - 256
——————————————————————————————— = ———————————————
x2 x2
Equation at the end of step 4 :
(x6 - 16x4 - 256)
(————————————————— + 4x) + 16
x2
Step 5 :
Rewriting the whole as an Equivalent Fraction :
5.1 Adding a whole to a fraction
Rewrite the whole as a fraction using x2 as the denominator :
4x 4x • x2
4x = —— = ———————
1 x2
Polynomial Roots Calculator :
5.2 Find roots (zeroes) of : F(x) = x6 - 16x4 - 256
Polynomial Roots Calculator is a set of methods aimed at finding values of x for which F(x)=0
Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers x which can be expressed as the quotient of two integers
The Rational Root Theorem states that if a polynomial zeroes for a rational number P/Q then P is a factor of the Trailing Constant and Q is a factor of the Leading Coefficient
In this case, the Leading Coefficient is 1 and the Trailing Constant is -256.
The factor(s) are:
of the Leading Coefficient : 1
of the Trailing Constant : 1 ,2 ,4 ,8 ,16 ,32 ,64 ,128 ,256
Let us test ....
P | Q | P/Q | F(P/Q) | Divisor | |||||
---|---|---|---|---|---|---|---|---|---|
-1 | 1 | -1.00 | -271.00 | ||||||
-2 | 1 | -2.00 | -448.00 | ||||||
-4 | 1 | -4.00 | -256.00 | ||||||
-8 | 1 | -8.00 | 196352.00 | ||||||
-16 | 1 | -16.00 | 15728384.00 |
Note - For tidiness, printing of 13 checks which found no root was suppressed
Polynomial Roots Calculator found no rational roots
Adding fractions that have a common denominator :
5.3 Adding up the two equivalent fractions
(x6-16x4-256) + 4x • x2 x6 - 16x4 + 4x3 - 256
——————————————————————— = —————————————————————
x2 x2
Equation at the end of step 5 :
(x6 - 16x4 + 4x3 - 256)
——————————————————————— + 16
x2
Step 6 :
Rewriting the whole as an Equivalent Fraction :
6.1 Adding a whole to a fraction
Rewrite the whole as a fraction using x2 as the denominator :
16 16 • x2
16 = —— = ———————
1 x2
Checking for a perfect cube :
6.2 x6 - 16x4 + 4x3 - 256 is not a perfect cube
Trying to factor by pulling out :
6.3 Factoring: x6 - 16x4 + 4x3 - 256
Thoughtfully split the expression at hand into groups, each group having two terms :
Group 1: x6 - 256
Group 2: -16x4 + 4x3
Pull out from each group separately :
Group 1: (x6 - 256) • (1)
Group 2: (4x - 1) • (-4x3)
Bad news !! Factoring by pulling out fails :
The groups have no common factor and can not be added up to form a multiplication.
Polynomial Roots Calculator :
6.4 Find roots (zeroes) of : F(x) = x6 - 16x4 + 4x3 - 256
See theory in step 5.2
In this case, the Leading Coefficient is 1 and the Trailing Constant is -256.
The factor(s) are:
of the Leading Coefficient : 1
of the Trailing Constant : 1 ,2 ,4 ,8 ,16 ,32 ,64 ,128 ,256
Let us test ....
P | Q | P/Q | F(P/Q) | Divisor | |||||
---|---|---|---|---|---|---|---|---|---|
-1 | 1 | -1.00 | -275.00 | ||||||
-2 | 1 | -2.00 | -480.00 | ||||||
-4 | 1 | -4.00 | -512.00 | ||||||
-8 | 1 | -8.00 | 194304.00 | ||||||
-16 | 1 | -16.00 | 15712000.00 | ||||||
-32 | 1 | -32.00 | 1056833280.00 | ||||||
-64 | 1 | -64.00 | 68449992448.00 | ||||||
-128 | 1 | -128.00 | 4393743154944.00 | ||||||
-256 | 1 | -256.00 | 281406190124800.00 | ||||||
1 | 1 | 1.00 | -267.00 | ||||||
2 | 1 | 2.00 | -416.00 | ||||||
4 | 1 | 4.00 | 0.00 | x - 4 | |||||
8 | 1 | 8.00 | 198400.00 | ||||||
16 | 1 | 16.00 | 15744768.00 | ||||||
32 | 1 | 32.00 | 1057095424.00 | ||||||
64 | 1 | 64.00 | 68452089600.00 | ||||||
128 | 1 | 128.00 | 4393759932160.00 | ||||||
256 | 1 | 256.00 | 281406324342528.00 |
The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms
In our case this means that
x6 - 16x4 + 4x3 - 256
can be divided with x - 4
Polynomial Long Division :
6.5 Polynomial Long Division
Dividing : x6 - 16x4 + 4x3 - 256
("Dividend")
By : x - 4 ("Divisor")
dividend | x6 | - | 16x4 | + | 4x3 | - | 256 | ||||||||
- divisor | * x5 | x6 | - | 4x5 | |||||||||||
remainder | 4x5 | - | 16x4 | + | 4x3 | - | 256 | ||||||||
- divisor | * 4x4 | 4x5 | - | 16x4 | |||||||||||
remainder | 4x3 | - | 256 | ||||||||||||
- divisor | * 0x3 | ||||||||||||||
remainder | 4x3 | - | 256 | ||||||||||||
- divisor | * 4x2 | 4x3 | - | 16x2 | |||||||||||
remainder | 16x2 | - | 256 | ||||||||||||
- divisor | * 16x1 | 16x2 | - | 64x | |||||||||||
remainder | 64x | - | 256 | ||||||||||||
- divisor | * 64x0 | 64x | - | 256 | |||||||||||
remainder | 0 |
Quotient : x5+4x4+4x2+16x+64 Remainder: 0
Polynomial Roots Calculator :
6.6 Find roots (zeroes) of : F(x) = x5+4x4+4x2+16x+64
See theory in step 5.2
In this case, the Leading Coefficient is 1 and the Trailing Constant is 64.
The factor(s) are:
of the Leading Coefficient : 1
of the Trailing Constant : 1 ,2 ,4 ,8 ,16 ,32 ,64
Let us test ....
P | Q | P/Q | F(P/Q) | Divisor | |||||
---|---|---|---|---|---|---|---|---|---|
-1 | 1 | -1.00 | 55.00 | ||||||
-2 | 1 | -2.00 | 80.00 | ||||||
-4 | 1 | -4.00 | 64.00 | ||||||
-8 | 1 | -8.00 | -16192.00 | ||||||
-16 | 1 | -16.00 | -785600.00 | ||||||
-32 | 1 | -32.00 | -29356480.00 | ||||||
-64 | 1 | -64.00 | -1006617536.00 | ||||||
1 | 1 | 1.00 | 89.00 | ||||||
2 | 1 | 2.00 | 208.00 | ||||||
4 | 1 | 4.00 | 2240.00 | ||||||
8 | 1 | 8.00 | 49600.00 | ||||||
16 | 1 | 16.00 | 1312064.00 | ||||||
32 | 1 | 32.00 | 37753408.00 | ||||||
64 | 1 | 64.00 | 1140868160.00 |
Polynomial Roots Calculator found no rational roots
Adding fractions that have a common denominator :
6.7 Adding up the two equivalent fractions
(x5+4x4+4x2+16x+64) • (x-4) + 16 • x2 x6 - 16x4 + 4x3 + 16x2 - 256
————————————————————————————————————— = ————————————————————————————
x2 x2
Polynomial Roots Calculator :
6.8 Find roots (zeroes) of : F(x) = x6 - 16x4 + 4x3 + 16x2 - 256
See theory in step 5.2
In this case, the Leading Coefficient is 1 and the Trailing Constant is -256.
The factor(s) are:
of the Leading Coefficient : 1
of the Trailing Constant : 1 ,2 ,4 ,8 ,16 ,32 ,64 ,128 ,256
Let us test ....
P | Q | P/Q | F(P/Q) | Divisor | |||||
---|---|---|---|---|---|---|---|---|---|
-1 | 1 | -1.00 | -259.00 | ||||||
-2 | 1 | -2.00 | -416.00 | ||||||
-4 | 1 | -4.00 | -256.00 | ||||||
-8 | 1 | -8.00 | 195328.00 | ||||||
-16 | 1 | -16.00 | 15716096.00 |
Note - For tidiness, printing of 13 checks which found no root was suppressed
Polynomial Roots Calculator found no rational roots
Final result :
x6 16x4 + 4x3 + 16x2 - 256 ———————————————————————————— x2
How did we do?
Please leave us feedback.