Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(x616x4+4x3+16x2-256)/(x2)
(x^616x^4+4x^3+16x^2-256)/(x^2)

Step by Step Solution

Step  1  :

            256
 Simplify   ———
            x2 

Equation at the end of step  1  :

                     256
  ((((x4)-(16•(x2)))-———)+4x)+16
                     x2 

Step  2  :

Equation at the end of step  2  :

                      256            
  ((((x4) -  24x2) -  ———) +  4x) +  16
                      x2             

Step  3  :

Rewriting the whole as an Equivalent Fraction :

 3.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  x2  as the denominator :

                  x4 - 16x2     (x4 - 16x2) • x2
     x4 - 16x2 =  —————————  =  ————————————————
                      1                x2       

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Step  4  :

Pulling out like terms :

 4.1     Pull out like factors :

   x4 - 16x2  =   x2 • (x2 - 16) 

Trying to factor as a Difference of Squares :

 4.2      Factoring:  x2 - 16 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check : 16 is the square of 4
Check :  x2  is the square of  x1 

Factorization is :       (x + 4)  •  (x - 4) 

Adding fractions that have a common denominator :

 4.3       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 x2 • (x+4) • (x-4) • x2 - (256)     x6 - 16x4 - 256
 ———————————————————————————————  =  ———————————————
               x2                          x2       

Equation at the end of step  4  :

   (x6 - 16x4 - 256)           
  (————————————————— +  4x) +  16
          x2                   

Step  5  :

Rewriting the whole as an Equivalent Fraction :

 5.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  x2  as the denominator :

          4x     4x • x2
    4x =  ——  =  ———————
          1        x2   

Polynomial Roots Calculator :

 5.2    Find roots (zeroes) of :       F(x) = x6 - 16x4 - 256
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -256.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4 ,8 ,16 ,32 ,64 ,128 ,256

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -271.00   
     -2     1      -2.00      -448.00   
     -4     1      -4.00      -256.00   
     -8     1      -8.00     196352.00   
     -16     1     -16.00     15728384.00   


Note - For tidiness, printing of 13 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

 5.3       Adding up the two equivalent fractions

 (x6-16x4-256) + 4x • x2     x6 - 16x4 + 4x3 - 256
 ———————————————————————  =  —————————————————————
           x2                         x2          

Equation at the end of step  5  :

  (x6 - 16x4 + 4x3 - 256)    
  ——————————————————————— +  16
            x2               

Step  6  :

Rewriting the whole as an Equivalent Fraction :

 6.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  x2  as the denominator :

          16     16 • x2
    16 =  ——  =  ———————
          1        x2   

Checking for a perfect cube :

 6.2    x6 - 16x4 + 4x3 - 256  is not a perfect cube

Trying to factor by pulling out :

 6.3      Factoring:  x6 - 16x4 + 4x3 - 256 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x6 - 256 
Group 2:  -16x4 + 4x3 

Pull out from each group separately :

Group 1:   (x6 - 256) • (1)
Group 2:   (4x - 1) • (-4x3)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 6.4    Find roots (zeroes) of :       F(x) = x6 - 16x4 + 4x3 - 256

     See theory in step 5.2
In this case, the Leading Coefficient is  1  and the Trailing Constant is  -256.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4 ,8 ,16 ,32 ,64 ,128 ,256

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -275.00   
     -2     1      -2.00      -480.00   
     -4     1      -4.00      -512.00   
     -8     1      -8.00     194304.00   
     -16     1     -16.00     15712000.00   
     -32     1     -32.00     1056833280.00   
     -64     1     -64.00     68449992448.00   
     -128     1     -128.00     4393743154944.00   
     -256     1     -256.00     281406190124800.00   
     1     1      1.00      -267.00   
     2     1      2.00      -416.00   
     4     1      4.00      0.00    x - 4 
     8     1      8.00     198400.00   
     16     1      16.00     15744768.00   
     32     1      32.00     1057095424.00   
     64     1      64.00     68452089600.00   
     128     1     128.00     4393759932160.00   
     256     1     256.00     281406324342528.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x6 - 16x4 + 4x3 - 256 
can be divided with  x - 4 

Polynomial Long Division :

 6.5    Polynomial Long Division
Dividing :  x6 - 16x4 + 4x3 - 256 
                              ("Dividend")
By         :    x - 4    ("Divisor")

dividend  x6   - 16x4 + 4x3     - 256 
- divisor * x5   x6 - 4x5           
remainder    4x5 - 16x4 + 4x3     - 256 
- divisor * 4x4     4x5 - 16x4         
remainder        4x3     - 256 
- divisor * 0x3               
remainder        4x3     - 256 
- divisor * 4x2         4x3 - 16x2     
remainder          16x2   - 256 
- divisor * 16x1           16x2 - 64x   
remainder            64x - 256 
- divisor * 64x0             64x - 256 
remainder             0

Quotient :  x5+4x4+4x2+16x+64  Remainder:  0 

Polynomial Roots Calculator :

 6.6    Find roots (zeroes) of :       F(x) = x5+4x4+4x2+16x+64

     See theory in step 5.2
In this case, the Leading Coefficient is  1  and the Trailing Constant is  64.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4 ,8 ,16 ,32 ,64

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      55.00   
     -2     1      -2.00      80.00   
     -4     1      -4.00      64.00   
     -8     1      -8.00     -16192.00   
     -16     1     -16.00     -785600.00   
     -32     1     -32.00     -29356480.00   
     -64     1     -64.00     -1006617536.00   
     1     1      1.00      89.00   
     2     1      2.00      208.00   
     4     1      4.00      2240.00   
     8     1      8.00     49600.00   
     16     1      16.00     1312064.00   
     32     1      32.00     37753408.00   
     64     1      64.00     1140868160.00   


Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

 6.7       Adding up the two equivalent fractions

 (x5+4x4+4x2+16x+64) • (x-4) + 16 • x2      x6 - 16x4 + 4x3 + 16x2 - 256 
 —————————————————————————————————————  =  ————————————————————————————
                  x2                                    x2             

Polynomial Roots Calculator :

 6.8    Find roots (zeroes) of :       F(x) = x6 - 16x4 + 4x3 + 16x2 - 256

     See theory in step 5.2
In this case, the Leading Coefficient is  1  and the Trailing Constant is  -256.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4 ,8 ,16 ,32 ,64 ,128 ,256

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -259.00   
     -2     1      -2.00      -416.00   
     -4     1      -4.00      -256.00   
     -8     1      -8.00     195328.00   
     -16     1     -16.00     15716096.00   


Note - For tidiness, printing of 13 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Final result :

  x6  16x4 + 4x3 + 16x2 - 256 
  ————————————————————————————
               x2             

Why learn this

Latest Related Drills Solved