Enter an equation or problem
Camera input is not recognized!

Solution - Factoring binomials using the difference of squares

x=2
x=2
x=1
x=1
x=1
x=-1
x=0
x=0

Step by Step Solution

Step by step solution :

Step  1  :

Equation at the end of step  1  :

  (((x4) -  2x3) -  x2) +  2x  = 0 

Step  2  :

Step  3  :

Pulling out like terms :

 3.1     Pull out like factors :

   x4 - 2x3 - x2 + 2x  = 

  x • (x3 - 2x2 - x + 2) 

Checking for a perfect cube :

 3.2    x3 - 2x2 - x + 2  is not a perfect cube

Trying to factor by pulling out :

 3.3      Factoring:  x3 - 2x2 - x + 2 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -x + 2 
Group 2:  x3 - 2x2 

Pull out from each group separately :

Group 1:   (-x + 2) • (1) = (x - 2) • (-1)
Group 2:   (x - 2) • (x2)
               -------------------
Add up the two groups :
               (x - 2)  •  (x2 - 1) 
Which is the desired factorization

Trying to factor as a Difference of Squares :

 3.4      Factoring:  x2 - 1 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check : 1 is the square of 1
Check :  x2  is the square of  x1 

Factorization is :       (x + 1)  •  (x - 1) 

Equation at the end of step  3  :

  x • (x + 1) • (x - 1) • (x - 2)  = 0 

Step  4  :

Theory - Roots of a product :

 4.1    A product of several terms equals zero. 

 
When a product of two or more terms equals zero, then at least one of the terms must be zero. 

 
We shall now solve each term = 0 separately 

 
In other words, we are going to solve as many equations as there are terms in the product 

 
Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation :

 4.2      Solve  :    x = 0 

 
Solution is  x = 0

Solving a Single Variable Equation :

 4.3      Solve  :    x+1 = 0 

 
Subtract  1  from both sides of the equation : 
 
                     x = -1

Solving a Single Variable Equation :

 4.4      Solve  :    x-1 = 0 

 
Add  1  to both sides of the equation : 
 
                     x = 1

Solving a Single Variable Equation :

 4.5      Solve  :    x-2 = 0 

 
Add  2  to both sides of the equation : 
 
                     x = 2

Four solutions were found :

  1.  x = 2
  2.  x = 1
  3.  x = -1
  4.  x = 0

Why learn this

Latest Related Drills Solved