Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(x5-3x4-13x3-6x2+5x+15)/(x)
(x^5-3x^4-13x^3-6x^2+5x+15)/(x)

Step by Step Solution

Step  1  :

             x
 Simplify   ——
            x2

Dividing exponential expressions :

 1.1    x1 divided by x2 = x(1 - 2) = x(-1) = 1/x1 = 1/x

Equation at the end of step  1  :

                                    1
  (((((x4)-(3•(x3)))-(13•(x2)))+(15•—))-6x)+5
                                    x

Step  2  :

Equation at the end of step  2  :

                           15
  (((((x4)-(3•(x3)))-13x2)+——)-6x)+5
                           x 

Step  3  :

Equation at the end of step  3  :

                      15
  (((((x4)-3x3)-13x2)+——)-6x)+5
                      x 

Step  4  :

Rewriting the whole as an Equivalent Fraction :

 4.1   Adding a fraction to a whole

Rewrite the whole as a fraction using  x  as the denominator :

                        x4 - 3x3 - 13x2      (x4 - 3x3 - 13x2) • x 
     x4 - 3x3 - 13x2 =  ———————————————  =  —————————————————————
                               1                      x          

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Step  5  :

Pulling out like terms :

 5.1     Pull out like factors :

   x4 - 3x3 - 13x2  =   x2 • (x2 - 3x - 13) 

Trying to factor by splitting the middle term

 5.2     Factoring  x2 - 3x - 13 

The first term is,  x2  its coefficient is  1 .
The middle term is,  -3x  its coefficient is  -3 .
The last term, "the constant", is  -13 

Step-1 : Multiply the coefficient of the first term by the constant   1 • -13 = -13 

Step-2 : Find two factors of  -13  whose sum equals the coefficient of the middle term, which is   -3 .

     -13   +   1   =   -12
     -1   +   13   =   12


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Adding fractions that have a common denominator :

 5.3       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 x2 • (x2-3x-13) • x + 15     x5 - 3x4 - 13x3 + 15 
 ————————————————————————  =  ————————————————————
            x                          x          

Equation at the end of step  5  :

   (x5 - 3x4 - 13x3 + 15)            
  (—————————————————————— -  6x) +  5
             x                      

Step  6  :

Rewriting the whole as an Equivalent Fraction :

 6.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  x  as the denominator :

          6x     6x • x
    6x =  ——  =  ——————
          1        x   

Checking for a perfect cube :

 6.2    x5 - 3x4 - 13x3 + 15  is not a perfect cube

Trying to factor by pulling out :

 6.3      Factoring:  x5 - 3x4 - 13x3 + 15 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -13x3 + 15 
Group 2:  x5 - 3x4 

Pull out from each group separately :

Group 1:   (-13x3 + 15) • (1) = (13x3 - 15) • (-1)
Group 2:   (x - 3) • (x4)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 6.4    Find roots (zeroes) of :       F(x) = x5 - 3x4 - 13x3 + 15
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  15.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,3 ,5 ,15

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      24.00   
     -3     1      -3.00      -120.00   
     -5     1      -5.00     -3360.00   
     -15     1     -15.00     -867360.00   
     1     1      1.00      0.00    x - 1 
     3     1      3.00      -336.00   
     5     1      5.00      -360.00   
     15     1      15.00     563640.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x5 - 3x4 - 13x3 + 15 
can be divided with  x - 1 

Polynomial Long Division :

 6.5    Polynomial Long Division
Dividing :  x5 - 3x4 - 13x3 + 15 
                              ("Dividend")
By         :    x - 1    ("Divisor")

dividend  x5 - 3x4 - 13x3     + 15 
- divisor * x4   x5 - x4         
remainder  - 2x4 - 13x3     + 15 
- divisor * -2x3   - 2x4 + 2x3       
remainder    - 15x3     + 15 
- divisor * -15x2     - 15x3 + 15x2     
remainder      - 15x2   + 15 
- divisor * -15x1       - 15x2 + 15x   
remainder        - 15x + 15 
- divisor * -15x0         - 15x + 15 
remainder           0

Quotient :  x4-2x3-15x2-15x-15  Remainder:  0 

Polynomial Roots Calculator :

 6.6    Find roots (zeroes) of :       F(x) = x4-2x3-15x2-15x-15

     See theory in step 6.4
In this case, the Leading Coefficient is  1  and the Trailing Constant is  -15.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,3 ,5 ,15

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -12.00   
     -3     1      -3.00      30.00   
     -5     1      -5.00      560.00   
     -15     1     -15.00     54210.00   
     1     1      1.00      -46.00   
     3     1      3.00      -168.00   
     5     1      5.00      -90.00   
     15     1      15.00     40260.00   


Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

 6.7       Adding up the two equivalent fractions

 (x4-2x3-15x2-15x-15) • (x-1) - (6x • x)      x5 - 3x4 - 13x3 - 6x2 + 15 
 ———————————————————————————————————————  =  ——————————————————————————
                    x                                    x             

Equation at the end of step  6  :

  (x5 - 3x4 - 13x3 - 6x2 + 15)     
  ———————————————————————————— +  5
               x                  

Step  7  :

Rewriting the whole as an Equivalent Fraction :

 7.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  x  as the denominator :

         5     5 • x
    5 =  —  =  —————
         1       x  

Polynomial Roots Calculator :

 7.2    Find roots (zeroes) of :       F(x) = x5 - 3x4 - 13x3 - 6x2 + 15

     See theory in step 6.4
In this case, the Leading Coefficient is  1  and the Trailing Constant is  15.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,3 ,5 ,15

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      18.00   
     -3     1      -3.00      -174.00   
     -5     1      -5.00     -3510.00   
     -15     1     -15.00     -868710.00   
     1     1      1.00      -6.00   
     3     1      3.00      -390.00   
     5     1      5.00      -510.00   
     15     1      15.00     562290.00   


Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

 7.3       Adding up the two equivalent fractions

 (x5-3x4-13x3-6x2+15) + 5 • x      x5 - 3x4 - 13x3 - 6x2 + 5x + 15 
 ————————————————————————————  =  ———————————————————————————————
              x                                  x               

Trying to factor by pulling out :

 7.4      Factoring:  x5 - 3x4 - 13x3 - 6x2 + 5x + 15 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -13x3 - 6x2 
Group 2:  x5 - 3x4 
Group 3:  5x + 15 

Pull out from each group separately :

Group 1:   (13x + 6) • (-x2)
Group 2:   (x - 3) • (x4)
Group 3:   (x + 3) • (5)


Looking for common sub-expressions :

Group 1:   (13x + 6) • (-x2)
Group 3:   (x + 3) • (5)
Group 2:   (x - 3) • (x4)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 7.5    Find roots (zeroes) of :       F(x) = x5 - 3x4 - 13x3 - 6x2 + 5x + 15

     See theory in step 6.4
In this case, the Leading Coefficient is  1  and the Trailing Constant is  15.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,3 ,5 ,15

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      13.00   
     -3     1      -3.00      -189.00   
     -5     1      -5.00     -3535.00   
     -15     1     -15.00     -868785.00   
     1     1      1.00      -1.00   
     3     1      3.00      -375.00   
     5     1      5.00      -485.00   
     15     1      15.00     562365.00   


Polynomial Roots Calculator found no rational roots

Final result :

  x5 - 3x4 - 13x3 - 6x2 + 5x + 15 
  ———————————————————————————————
                 x               

Why learn this

Latest Related Drills Solved