Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

x=3
x=3
x=1
x=1
x=0.00002.0000i
x=0.0000-2.0000i
x=0.0000+2.0000i
x=0.0000+2.0000i

Step by Step Solution

Step by step solution :

Step  1  :

Equation at the end of step  1  :

  ((((x4)-(4•(x3)))+7x2)-16x)+12  = 0 

Step  2  :

Equation at the end of step  2  :

  ((((x4) -  22x3) +  7x2) -  16x) +  12  = 0 

Step  3  :

Polynomial Roots Calculator :

 3.1    Find roots (zeroes) of :       F(x) = x4-4x3+7x2-16x+12
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  12.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,12

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      40.00   
     -2     1      -2.00      120.00   
     -3     1      -3.00      312.00   
     -4     1      -4.00      700.00   
     -6     1      -6.00      2520.00   
     -12     1     -12.00     28860.00   
     1     1      1.00      0.00    x-1 
     2     1      2.00      -8.00   
     3     1      3.00      0.00    x-3 
     4     1      4.00      60.00   
     6     1      6.00      600.00   
     12     1      12.00     14652.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x4-4x3+7x2-16x+12 
can be divided by 2 different polynomials,including by  x-3 

Polynomial Long Division :

 3.2    Polynomial Long Division
Dividing :  x4-4x3+7x2-16x+12 
                              ("Dividend")
By         :    x-3    ("Divisor")

dividend  x4 - 4x3 + 7x2 - 16x + 12 
- divisor * x3   x4 - 3x3       
remainder  - x3 + 7x2 - 16x + 12 
- divisor * -x2   - x3 + 3x2     
remainder      4x2 - 16x + 12 
- divisor * 4x1       4x2 - 12x   
remainder      - 4x + 12 
- divisor * -4x0       - 4x + 12 
remainder         0

Quotient :  x3-x2+4x-4  Remainder:  0 

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = x3-x2+4x-4

     See theory in step 3.1
In this case, the Leading Coefficient is  1  and the Trailing Constant is  -4.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -10.00   
     -2     1      -2.00      -24.00   
     -4     1      -4.00      -100.00   
     1     1      1.00      0.00    x-1 
     2     1      2.00      8.00   
     4     1      4.00      60.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x3-x2+4x-4 
can be divided with  x-1 

Polynomial Long Division :

 3.4    Polynomial Long Division
Dividing :  x3-x2+4x-4 
                              ("Dividend")
By         :    x-1    ("Divisor")

dividend  x3 - x2 + 4x - 4 
- divisor * x2   x3 - x2     
remainder      4x - 4 
- divisor * 0x1         
remainder      4x - 4 
- divisor * 4x0       4x - 4 
remainder       0

Quotient :  x2+4  Remainder:  0 

Polynomial Roots Calculator :

 3.5    Find roots (zeroes) of :       F(x) = x2+4

     See theory in step 3.1
In this case, the Leading Coefficient is  1  and the Trailing Constant is  4.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      5.00   
     -2     1      -2.00      8.00   
     -4     1      -4.00      20.00   
     1     1      1.00      5.00   
     2     1      2.00      8.00   
     4     1      4.00      20.00   


Polynomial Roots Calculator found no rational roots

Equation at the end of step  3  :

  (x2 + 4) • (x - 1) • (x - 3)  = 0 

Step  4  :

Theory - Roots of a product :

 4.1    A product of several terms equals zero. 

 
When a product of two or more terms equals zero, then at least one of the terms must be zero. 

 
We shall now solve each term = 0 separately 

 
In other words, we are going to solve as many equations as there are terms in the product 

 
Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation :

 4.2      Solve  :    x2+4 = 0 

 
Subtract  4  from both sides of the equation : 
 
                     x2 = -4
 
 
When two things are equal, their square roots are equal. Taking the square root of the two sides of the equation we get:  
 
                     x  =  ± √ -4  

 
In Math,  i  is called the imaginary unit. It satisfies   i2  =-1. Both   i   and   -i   are the square roots of   -1 

Accordingly,  √ -4  =
                    √ -1• 4   =
                    √ -1 •√  4   =
                    i •  √ 4

Can  √ 4 be simplified ?

Yes!   The prime factorization of  4   is
   2•2 
To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

4   =  √ 2•2   =
                ±  2 • √ 1   =
                ±  2


The equation has no real solutions. It has 2 imaginary, or complex solutions.

                      x=  0.0000 + 2.0000
                      x=  0.0000 - 2.0000

Solving a Single Variable Equation :

 4.3      Solve  :    x-1 = 0 

 
Add  1  to both sides of the equation : 
 
                     x = 1

Solving a Single Variable Equation :

 4.4      Solve  :    x-3 = 0 

 
Add  3  to both sides of the equation : 
 
                     x = 3

Four solutions were found :

  1.  x = 3
  2.  x = 1
  3.   x=  0.0000 - 2.0000
  4.   x=  0.0000 + 2.0000

Why learn this

Latest Related Drills Solved