Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

x=2
x=2
x=4
x=-4
x=0.00004.0000i
x=0.0000-4.0000i
x=0.0000+4.0000i
x=0.0000+4.0000i

Step by Step Solution

Step by step solution :

Step  1  :

Equation at the end of step  1  :

  ((((x4)+(2•(x3)))+23x2)+32x)-128  = 0 

Step  2  :

Equation at the end of step  2  :

  ((((x4) +  2x3) +  23x2) +  32x) -  128  = 0 

Step  3  :

Polynomial Roots Calculator :

 3.1    Find roots (zeroes) of :       F(x) = x4+2x3+8x2+32x-128
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -128.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4 ,8 ,16 ,32 ,64 ,128

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -153.00   
     -2     1      -2.00      -160.00   
     -4     1      -4.00      0.00    x+4 
     -8     1      -8.00      3200.00   
     -16     1     -16.00     58752.00   
     -32     1     -32.00     990080.00   
     -64     1     -64.00     16283520.00   
     -128     1     -128.00     264368000.00   
     1     1      1.00      -85.00   
     2     1      2.00      0.00    x-2 
     4     1      4.00      512.00   
     8     1      8.00      5760.00   
     16     1      16.00     76160.00   
     32     1      32.00     1123200.00   
     64     1      64.00     17336192.00   
     128     1     128.00     272764800.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x4+2x3+8x2+32x-128 
can be divided by 2 different polynomials,including by  x-2 

Polynomial Long Division :

 3.2    Polynomial Long Division
Dividing :  x4+2x3+8x2+32x-128 
                              ("Dividend")
By         :    x-2    ("Divisor")

dividend  x4 + 2x3 + 8x2 + 32x - 128 
- divisor * x3   x4 - 2x3       
remainder    4x3 + 8x2 + 32x - 128 
- divisor * 4x2     4x3 - 8x2     
remainder      16x2 + 32x - 128 
- divisor * 16x1       16x2 - 32x   
remainder        64x - 128 
- divisor * 64x0         64x - 128 
remainder         0

Quotient :  x3+4x2+16x+64  Remainder:  0 

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = x3+4x2+16x+64

     See theory in step 3.1
In this case, the Leading Coefficient is  1  and the Trailing Constant is  64.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4 ,8 ,16 ,32 ,64

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      51.00   
     -2     1      -2.00      40.00   
     -4     1      -4.00      0.00    x+4 
     -8     1      -8.00      -320.00   
     -16     1     -16.00     -3264.00   
     -32     1     -32.00     -29120.00   
     -64     1     -64.00     -246720.00   
     1     1      1.00      85.00   
     2     1      2.00      120.00   
     4     1      4.00      256.00   
     8     1      8.00      960.00   
     16     1      16.00      5440.00   
     32     1      32.00     37440.00   
     64     1      64.00     279616.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x3+4x2+16x+64 
can be divided with  x+4 

Polynomial Long Division :

 3.4    Polynomial Long Division
Dividing :  x3+4x2+16x+64 
                              ("Dividend")
By         :    x+4    ("Divisor")

dividend  x3 + 4x2 + 16x + 64 
- divisor * x2   x3 + 4x2     
remainder      16x + 64 
- divisor * 0x1         
remainder      16x + 64 
- divisor * 16x0       16x + 64 
remainder       0

Quotient :  x2+16  Remainder:  0 

Polynomial Roots Calculator :

 3.5    Find roots (zeroes) of :       F(x) = x2+16

     See theory in step 3.1
In this case, the Leading Coefficient is  1  and the Trailing Constant is  16.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4 ,8 ,16

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      17.00   
     -2     1      -2.00      20.00   
     -4     1      -4.00      32.00   
     -8     1      -8.00      80.00   
     -16     1     -16.00      272.00   
     1     1      1.00      17.00   
     2     1      2.00      20.00   
     4     1      4.00      32.00   
     8     1      8.00      80.00   
     16     1      16.00      272.00   


Polynomial Roots Calculator found no rational roots

Equation at the end of step  3  :

  (x2 + 16) • (x + 4) • (x - 2)  = 0 

Step  4  :

Theory - Roots of a product :

 4.1    A product of several terms equals zero. 

 
When a product of two or more terms equals zero, then at least one of the terms must be zero. 

 
We shall now solve each term = 0 separately 

 
In other words, we are going to solve as many equations as there are terms in the product 

 
Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation :

 4.2      Solve  :    x2+16 = 0 

 
Subtract  16  from both sides of the equation : 
 
                     x2 = -16
 
 
When two things are equal, their square roots are equal. Taking the square root of the two sides of the equation we get:  
 
                     x  =  ± √ -16  

 
In Math,  i  is called the imaginary unit. It satisfies   i2  =-1. Both   i   and   -i   are the square roots of   -1 

Accordingly,  √ -16  =
                    √ -1• 16   =
                    √ -1 •√  16   =
                    i •  √ 16

Can  √ 16 be simplified ?

Yes!   The prime factorization of  16   is
   2•2•2•2 
To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

16   =  √ 2•2•2•2   =2•2•√ 1   =
                ±  4 • √ 1   =
                ±  4


The equation has no real solutions. It has 2 imaginary, or complex solutions.

                      x=  0.0000 + 4.0000
                      x=  0.0000 - 4.0000

Solving a Single Variable Equation :

 4.3      Solve  :    x+4 = 0 

 
Subtract  4  from both sides of the equation : 
 
                     x = -4

Solving a Single Variable Equation :

 4.4      Solve  :    x-2 = 0 

 
Add  2  to both sides of the equation : 
 
                     x = 2

Four solutions were found :

  1.  x = 2
  2.  x = -4
  3.   x=  0.0000 - 4.0000
  4.   x=  0.0000 + 4.0000

Why learn this

Latest Related Drills Solved