Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

x=3
x=3
x=8
x=-8
x=0.00002.8284i
x=0.0000-2.8284i
x=0.0000+2.8284i
x=0.0000+2.8284i

Step by Step Solution

Step by step solution :

Step  1  :

Equation at the end of step  1  :

  ((((x4)+(5•(x3)))-24x2)+40x)-192  = 0 

Step  2  :

Equation at the end of step  2  :

  ((((x4) +  5x3) -  24x2) +  40x) -  192  = 0 

Step  3  :

Polynomial Roots Calculator :

 3.1    Find roots (zeroes) of :       F(x) = x4+5x3-16x2+40x-192
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -192.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,8 ,12 ,16 ,24 ,32 , etc

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -252.00   
     -2     1      -2.00      -360.00   
     -3     1      -3.00      -510.00   
     -4     1      -4.00      -672.00   
     -6     1      -6.00      -792.00   
     -8     1      -8.00      0.00    x+8 
     -12     1     -12.00      9120.00   
     -16     1     -16.00     40128.00   
     -24     1     -24.00     252288.00   
     -32     1     -32.00     866880.00   
     1     1      1.00      -162.00   
     2     1      2.00      -120.00   
     3     1      3.00      0.00    x-3 
     4     1      4.00      288.00   
     6     1      6.00      1848.00   
     8     1      8.00      5760.00   
     12     1      12.00     27360.00   
     16     1      16.00     82368.00   
     24     1      24.00     392448.00   
     32     1      32.00     1197120.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x4+5x3-16x2+40x-192 
can be divided by 2 different polynomials,including by  x-3 

Polynomial Long Division :

 3.2    Polynomial Long Division
Dividing :  x4+5x3-16x2+40x-192 
                              ("Dividend")
By         :    x-3    ("Divisor")

dividend  x4 + 5x3 - 16x2 + 40x - 192 
- divisor * x3   x4 - 3x3       
remainder    8x3 - 16x2 + 40x - 192 
- divisor * 8x2     8x3 - 24x2     
remainder      8x2 + 40x - 192 
- divisor * 8x1       8x2 - 24x   
remainder        64x - 192 
- divisor * 64x0         64x - 192 
remainder         0

Quotient :  x3+8x2+8x+64  Remainder:  0 

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = x3+8x2+8x+64

     See theory in step 3.1
In this case, the Leading Coefficient is  1  and the Trailing Constant is  64.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4 ,8 ,16 ,32 ,64

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      63.00   
     -2     1      -2.00      72.00   
     -4     1      -4.00      96.00   
     -8     1      -8.00      0.00    x+8 
     -16     1     -16.00     -2112.00   
     -32     1     -32.00     -24768.00   
     -64     1     -64.00     -229824.00   
     1     1      1.00      81.00   
     2     1      2.00      120.00   
     4     1      4.00      288.00   
     8     1      8.00      1152.00   
     16     1      16.00      6336.00   
     32     1      32.00     41280.00   
     64     1      64.00     295488.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x3+8x2+8x+64 
can be divided with  x+8 

Polynomial Long Division :

 3.4    Polynomial Long Division
Dividing :  x3+8x2+8x+64 
                              ("Dividend")
By         :    x+8    ("Divisor")

dividend  x3 + 8x2 + 8x + 64 
- divisor * x2   x3 + 8x2     
remainder      8x + 64 
- divisor * 0x1         
remainder      8x + 64 
- divisor * 8x0       8x + 64 
remainder       0

Quotient :  x2+8  Remainder:  0 

Polynomial Roots Calculator :

 3.5    Find roots (zeroes) of :       F(x) = x2+8

     See theory in step 3.1
In this case, the Leading Coefficient is  1  and the Trailing Constant is  8.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4 ,8

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      9.00   
     -2     1      -2.00      12.00   
     -4     1      -4.00      24.00   
     -8     1      -8.00      72.00   
     1     1      1.00      9.00   
     2     1      2.00      12.00   
     4     1      4.00      24.00   
     8     1      8.00      72.00   


Polynomial Roots Calculator found no rational roots

Equation at the end of step  3  :

  (x2 + 8) • (x + 8) • (x - 3)  = 0 

Step  4  :

Theory - Roots of a product :

 4.1    A product of several terms equals zero. 

 
When a product of two or more terms equals zero, then at least one of the terms must be zero. 

 
We shall now solve each term = 0 separately 

 
In other words, we are going to solve as many equations as there are terms in the product 

 
Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation :

 4.2      Solve  :    x2+8 = 0 

 
Subtract  8  from both sides of the equation : 
 
                     x2 = -8
 
 
When two things are equal, their square roots are equal. Taking the square root of the two sides of the equation we get:  
 
                     x  =  ± √ -8  

 
In Math,  i  is called the imaginary unit. It satisfies   i2  =-1. Both   i   and   -i   are the square roots of   -1 

Accordingly,  √ -8  =
                    √ -1• 8   =
                    √ -1 •√  8   =
                    i •  √ 8

Can  √ 8 be simplified ?

Yes!   The prime factorization of  8   is
   2•2•2 
To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

8   =  √ 2•2•2   =
                ±  2 • √ 2


The equation has no real solutions. It has 2 imaginary, or complex solutions.

                      x=  0.0000 + 2.8284
                      x=  0.0000 - 2.8284

Solving a Single Variable Equation :

 4.3      Solve  :    x+8 = 0 

 
Subtract  8  from both sides of the equation : 
 
                     x = -8

Solving a Single Variable Equation :

 4.4      Solve  :    x-3 = 0 

 
Add  3  to both sides of the equation : 
 
                     x = 3

Four solutions were found :

  1.  x = 3
  2.  x = -8
  3.   x=  0.0000 - 2.8284
  4.   x=  0.0000 + 2.8284

Why learn this

Latest Related Drills Solved