Enter an equation or problem
Camera input is not recognized!

Solution - Equations reducible to quadratic form

x=1
x=1
x=1
x=-1
x=(0.382)=0.61803
x=sqrt(0.382)=-0.61803
x=(0.382)=0.61803
x=sqrt(0.382)=0.61803
x=(2.618)=1.61803
x=sqrt(2.618)=-1.61803
x=(2.618)=1.61803
x=sqrt(2.618)=1.61803

Step by Step Solution

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

                x^6-4*x^4+4*x^2-1-(0/t)=0 

Step by step solution :

Step  1  :

            0
 Simplify   —
            t

Equation at the end of step  1  :

  ((((x6)-(4•(x4)))+(4•(x2)))-1)-0  = 0 

Step  2  :

Equation at the end of step  2  :

  ((((x6)-(4•(x4)))+22x2)-1)-0  = 0 

Step  3  :

Equation at the end of step  3  :

  ((((x6) -  22x4) +  22x2) -  1) -  0  = 0 

Step  4  :

Checking for a perfect cube :

 4.1    x6-4x4+4x2-1  is not a perfect cube

Trying to factor by pulling out :

 4.2      Factoring:  x6-4x4+4x2-1 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  4x2-1 
Group 2:  -4x4+x6 

Pull out from each group separately :

Group 1:   (4x2-1) • (1)
Group 2:   (x2-4) • (x4)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 4.3    Find roots (zeroes) of :       F(x) = x6-4x4+4x2-1
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -1.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      0.00    x+1 
     1     1      1.00      0.00    x-1 


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x6-4x4+4x2-1 
can be divided by 2 different polynomials,including by  x-1 

Polynomial Long Division :

 4.4    Polynomial Long Division
Dividing :  x6-4x4+4x2-1 
                              ("Dividend")
By         :    x-1    ("Divisor")

dividend  x6   - 4x4   + 4x2   - 1 
- divisor * x5   x6 - x5           
remainder    x5 - 4x4   + 4x2   - 1 
- divisor * x4     x5 - x4         
remainder    - 3x4   + 4x2   - 1 
- divisor * -3x3     - 3x4 + 3x3       
remainder      - 3x3 + 4x2   - 1 
- divisor * -3x2       - 3x3 + 3x2     
remainder          x2   - 1 
- divisor * x1           x2 - x   
remainder            x - 1 
- divisor * x0             x - 1 
remainder             0

Quotient :  x5+x4-3x3-3x2+x+1  Remainder:  0 

Polynomial Roots Calculator :

 4.5    Find roots (zeroes) of :       F(x) = x5+x4-3x3-3x2+x+1

     See theory in step 4.3
In this case, the Leading Coefficient is  1  and the Trailing Constant is  1.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      0.00    x+1 
     1     1      1.00      -2.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x5+x4-3x3-3x2+x+1 
can be divided with  x+1 

Polynomial Long Division :

 4.6    Polynomial Long Division
Dividing :  x5+x4-3x3-3x2+x+1 
                              ("Dividend")
By         :    x+1    ("Divisor")

dividend  x5 + x4 - 3x3 - 3x2 + x + 1 
- divisor * x4   x5 + x4         
remainder    - 3x3 - 3x2 + x + 1 
- divisor * 0x3             
remainder    - 3x3 - 3x2 + x + 1 
- divisor * -3x2     - 3x3 - 3x2     
remainder          x + 1 
- divisor * 0x1             
remainder          x + 1 
- divisor * x0           x + 1 
remainder           0

Quotient :  x4-3x2+1  Remainder:  0 

Trying to factor by splitting the middle term

 4.7     Factoring  x4-3x2+1 

The first term is,  x4  its coefficient is  1 .
The middle term is,  -3x2  its coefficient is  -3 .
The last term, "the constant", is  +1 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 1 = 1 

Step-2 : Find two factors of  1  whose sum equals the coefficient of the middle term, which is   -3 .

     -1   +   -1   =   -2
     1   +   1   =   2


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Equation at the end of step  4  :

  (x4 - 3x2 + 1) • (x + 1) • (x - 1)  = 0 

Step  5  :

Theory - Roots of a product :

 5.1    A product of several terms equals zero. 

 
When a product of two or more terms equals zero, then at least one of the terms must be zero. 

 
We shall now solve each term = 0 separately 

 
In other words, we are going to solve as many equations as there are terms in the product 

 
Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation :

Equations which are reducible to quadratic :

 5.2     Solve   x4-3x2+1 = 0

This equation is reducible to quadratic. What this means is that using a new variable, we can rewrite this equation as a quadratic equation Using  w , such that  w = x2  transforms the equation into :
 w2-3w+1 = 0

Solving this new equation using the quadratic formula we get two real solutions :
   2.6180  or   0.3820

Now that we know the value(s) of  w , we can calculate  x  since  x  is  √ w  

Doing just this we discover that the solutions of
   x4-3x2+1 = 0
  are either : 
   x =√ 2.618 = 1.61803  or :
   x =√ 2.618 = -1.61803  or :
   x =√ 0.382 = 0.61803  or :
   x =√ 0.382 = -0.61803

Solving a Single Variable Equation :

 5.3      Solve  :    x+1 = 0 

 
Subtract  1  from both sides of the equation : 
 
                     x = -1

Solving a Single Variable Equation :

 5.4      Solve  :    x-1 = 0 

 
Add  1  to both sides of the equation : 
 
                     x = 1

6 solutions were found :

  1.  x = 1
  2.  x = -1
  3.  x =√ 0.382 = -0.61803
  4.  x =√ 0.382 = 0.61803
  5.  x =√ 2.618 = -1.61803
  6.  x =√ 2.618 = 1.61803

Why learn this

Latest Related Drills Solved