Enter an equation or problem
Camera input is not recognized!

Solution - Polynomial long division

(z1)3
(z-1)^3

Other Ways to Solve

Polynomial long division

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  (((z3) -  3z2) +  3z) -  1

Step  2  :

Checking for a perfect cube :

 2.1    z3-3z2+3z-1  is not a perfect cube

Trying to factor by pulling out :

 2.2      Factoring:  z3-3z2+3z-1 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  3z-1 
Group 2:  -3z2+z3 

Pull out from each group separately :

Group 1:   (3z-1) • (1)
Group 2:   (z-3) • (z2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 2.3    Find roots (zeroes) of :       F(z) = z3-3z2+3z-1
Polynomial Roots Calculator is a set of methods aimed at finding values of  z  for which   F(z)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  z  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -1.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -8.00   
     1     1      1.00      0.00    z-1 


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   z3-3z2+3z-1 
can be divided with  z-1 

Polynomial Long Division :

 2.4    Polynomial Long Division
Dividing :  z3-3z2+3z-1 
                              ("Dividend")
By         :    z-1    ("Divisor")

dividend  z3 - 3z2 + 3z - 1 
- divisor * z2   z3 - z2     
remainder  - 2z2 + 3z - 1 
- divisor * -2z1   - 2z2 + 2z   
remainder      z - 1 
- divisor * z0       z - 1 
remainder       0

Quotient :  z2-2z+1  Remainder:  0 

Trying to factor by splitting the middle term

 2.5     Factoring  z2-2z+1 

The first term is,  z2  its coefficient is  1 .
The middle term is,  -2z  its coefficient is  -2 .
The last term, "the constant", is  +1 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 1 = 1 

Step-2 : Find two factors of  1  whose sum equals the coefficient of the middle term, which is   -2 .

     -1   +   -1   =   -2   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -1  and  -1 
                     z2 - 1z - 1z - 1

Step-4 : Add up the first 2 terms, pulling out like factors :
                    z • (z-1)
              Add up the last 2 terms, pulling out common factors :
                     1 • (z-1)
Step-5 : Add up the four terms of step 4 :
                    (z-1)  •  (z-1)
             Which is the desired factorization

Multiplying Exponential Expressions :

 2.6    Multiply  (z-1)  by  (z-1) 

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (z-1)  and the exponents are :
          1 , as  (z-1)  is the same number as  (z-1)1 
 and   1 , as  (z-1)  is the same number as  (z-1)1 
The product is therefore,  (z-1)(1+1) = (z-1)2 

Multiplying Exponential Expressions :

 2.7    Multiply  (z-1)2   by  (z-1) 

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (z-1)  and the exponents are :
          2
 and   1 , as  (z-1)  is the same number as  (z-1)1 
The product is therefore,  (z-1)(2+1) = (z-1)3 

Final result :

  (z - 1)3

Why learn this

Latest Related Drills Solved