Enter an equation or problem
Camera input is not recognized!

Solution - Absolute value equations

Exact form: x=9,332
x=9 , \frac{33}{2}
Mixed number form: x=9,1612
x=9 , 16\frac{1}{2}
Decimal form: x=9,16.5
x=9 , 16.5

Other Ways to Solve

Absolute value equations

Step-by-step explanation

1. Rewrite the equation without absolute value bars

Use the rules:
|x|=|y|x=±y and |x|=|y|±x=y
to write all four options of the equation
|12x-7|=|16x-4|
without the absolute value bars:

|x|=|y||12x-7|=|16x-4|
x=+y(12x-7)=(16x-4)
x=-y(12x-7)=-(16x-4)
+x=y(12x-7)=(16x-4)
-x=y-(12x-7)=(16x-4)

When simplified, equations x=+y and +x=y are the same and equations x=y and x=y are the same, so we end up with only 2 equations:

|x|=|y||12x-7|=|16x-4|
x=+y , +x=y(12x-7)=(16x-4)
x=-y , -x=y(12x-7)=-(16x-4)

2. Solve the two equations for x

22 additional steps

(12·x-7)=(16x-4)

Subtract from both sides:

(12x-7)-16·x=(16x-4)-16x

Group like terms:

(12·x+-16·x)-7=(16·x-4)-16x

Group the coefficients:

(12+-16)x-7=(16·x-4)-16x

Find the lowest common denominator:

((1·3)(2·3)+-16)x-7=(16·x-4)-16x

Multiply the denominators:

((1·3)6+-16)x-7=(16·x-4)-16x

Multiply the numerators:

(36+-16)x-7=(16·x-4)-16x

Combine the fractions:

(3-1)6·x-7=(16·x-4)-16x

Combine the numerators:

26·x-7=(16·x-4)-16x

Find the greatest common factor of the numerator and denominator:

(1·2)(3·2)·x-7=(16·x-4)-16x

Factor out and cancel the greatest common factor:

13·x-7=(16·x-4)-16x

Group like terms:

13·x-7=(16·x+-16x)-4

Combine the fractions:

13·x-7=(1-1)6x-4

Combine the numerators:

13·x-7=06x-4

Reduce the zero numerator:

13x-7=0x-4

Simplify the arithmetic:

13x-7=-4

Add to both sides:

(13x-7)+7=-4+7

Simplify the arithmetic:

13x=-4+7

Simplify the arithmetic:

13x=3

Multiply both sides by inverse fraction :

(13x)·31=3·31

Group like terms:

(13·3)x=3·31

Multiply the coefficients:

(1·3)3x=3·31

Simplify the fraction:

x=3·31

Simplify the arithmetic:

x=9

24 additional steps

(12x-7)=-(16x-4)

Expand the parentheses:

(12·x-7)=-16x+4

Add to both sides:

(12x-7)+16·x=(-16x+4)+16x

Group like terms:

(12·x+16·x)-7=(-16·x+4)+16x

Group the coefficients:

(12+16)x-7=(-16·x+4)+16x

Find the lowest common denominator:

((1·3)(2·3)+16)x-7=(-16·x+4)+16x

Multiply the denominators:

((1·3)6+16)x-7=(-16·x+4)+16x

Multiply the numerators:

(36+16)x-7=(-16·x+4)+16x

Combine the fractions:

(3+1)6·x-7=(-16·x+4)+16x

Combine the numerators:

46·x-7=(-16·x+4)+16x

Find the greatest common factor of the numerator and denominator:

(2·2)(3·2)·x-7=(-16·x+4)+16x

Factor out and cancel the greatest common factor:

23·x-7=(-16·x+4)+16x

Group like terms:

23·x-7=(-16·x+16x)+4

Combine the fractions:

23·x-7=(-1+1)6x+4

Combine the numerators:

23·x-7=06x+4

Reduce the zero numerator:

23x-7=0x+4

Simplify the arithmetic:

23x-7=4

Add to both sides:

(23x-7)+7=4+7

Simplify the arithmetic:

23x=4+7

Simplify the arithmetic:

23x=11

Multiply both sides by inverse fraction :

(23x)·32=11·32

Group like terms:

(23·32)x=11·32

Multiply the coefficients:

(2·3)(3·2)x=11·32

Simplify the fraction:

x=11·32

Multiply the fraction(s):

x=(11·3)2

Simplify the arithmetic:

x=332

3. List the solutions

x=9,332
(2 solution(s))

4. Graph

Each line represents the function of one side of the equation:
y=|12x-7|
y=|16x-4|
The equation is true where the two lines cross.

Why learn this

We encounter absolute values almost daily. For example: If you walk 3 miles to school, do you also walk minus 3 miles when you go back home? The answer is no because distances use absolute value. The absolute value of the distance between home and school is 3 miles, there or back.
In short, absolute values help us deal with concepts like distance, ranges of possible values, and deviation from a set value.