Enter an equation or problem
Camera input is not recognized!

Solution - Equations reducible to quadratic form

x=root[3]-0.667=-0.87358
x=root[3]{-0.667}=-0.87358
x=root[3]6=1.8171
x=root[3]{6}=1.8171

Step by Step Solution

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

           (((x^2)*3*x)^2)-(16*((x^2)*3*x))-(36)=0 

Step by step solution :

Step  1  :

Equation at the end of step  1  :

  (((((x2)•3)•x)2)-(16•(3x2•x)))-36  = 0 

Step  2  :

Equation at the end of step  2  :

  (((((x2)•3)•x)2)-(24•3x3))-36  = 0 

Step  3  :

Equation at the end of step  3  :

  (((3x2 • x)2) -  (24•3x3)) -  36  = 0 

Step  4  :

Step  5  :

Pulling out like terms :

 5.1     Pull out like factors :

   9x6 - 48x3 - 36  =   3 • (3x6 - 16x3 - 12) 

Trying to factor by splitting the middle term

 5.2     Factoring  3x6 - 16x3 - 12 

The first term is,  3x6  its coefficient is  3 .
The middle term is,  -16x3  its coefficient is  -16 .
The last term, "the constant", is  -12 

Step-1 : Multiply the coefficient of the first term by the constant   3 • -12 = -36 

Step-2 : Find two factors of  -36  whose sum equals the coefficient of the middle term, which is   -16 .

     -36   +   1   =   -35
     -18   +   2   =   -16   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -18  and  2 
                     3x6 - 18x3 + 2x3 - 12

Step-4 : Add up the first 2 terms, pulling out like factors :
                    3x3 • (x3-6)
              Add up the last 2 terms, pulling out common factors :
                    2 • (x3-6)
Step-5 : Add up the four terms of step 4 :
                    (3x3+2)  •  (x3-6)
             Which is the desired factorization

Trying to factor as a Difference of Cubes:

 5.3      Factoring:  x3-6 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  6  is not a cube !!
Ruling : Binomial can not be factored as the difference of two perfect cubes

Polynomial Roots Calculator :

 5.4    Find roots (zeroes) of :       F(x) = x3-6
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -6.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,3 ,6

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -7.00   
     -2     1      -2.00      -14.00   
     -3     1      -3.00      -33.00   
     -6     1      -6.00      -222.00   
     1     1      1.00      -5.00   
     2     1      2.00      2.00   
     3     1      3.00      21.00   
     6     1      6.00      210.00   


Polynomial Roots Calculator found no rational roots

Trying to factor as a Sum of Cubes :

 5.5      Factoring:  3x3+2 

Theory : A sum of two perfect cubes,  a3 + b3 can be factored into  :
             (a+b) • (a2-ab+b2)
Proof  : (a+b) • (a2-ab+b2) =
    a3-a2b+ab2+ba2-b2a+b3 =
    a3+(a2b-ba2)+(ab2-b2a)+b3=
    a3+0+0+b3=
    a3+b3


Check :  3  is not a cube !!

Ruling : Binomial can not be factored as the difference of two perfect cubes

Polynomial Roots Calculator :

 5.6    Find roots (zeroes) of :       F(x) = 3x3+2

     See theory in step 5.4
In this case, the Leading Coefficient is  3  and the Trailing Constant is  2.

 
The factor(s) are:

of the Leading Coefficient :  1,3
 
of the Trailing Constant :  1 ,2

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -1.00   
     -1     3      -0.33      1.89   
     -2     1      -2.00      -22.00   
     -2     3      -0.67      1.11   
     1     1      1.00      5.00   
     1     3      0.33      2.11   
     2     1      2.00      26.00   
     2     3      0.67      2.89   


Polynomial Roots Calculator found no rational roots

Equation at the end of step  5  :

  3 • (x3 - 6) • (3x3 + 2)  = 0 

Step  6  :

Theory - Roots of a product :

 6.1    A product of several terms equals zero. 

 
When a product of two or more terms equals zero, then at least one of the terms must be zero. 

 
We shall now solve each term = 0 separately 

 
In other words, we are going to solve as many equations as there are terms in the product 

 
Any solution of term = 0 solves product = 0 as well.

Equations which are never true :

 6.2      Solve :    3   =  0

This equation has no solution.
A a non-zero constant never equals zero.

Solving a Single Variable Equation :

 6.3      Solve  :    x3-6 = 0 

 
Add  6  to both sides of the equation : 
 
                     x3 = 6
When two things are equal, their cube roots are equal. Taking the cube root of the two sides of the equation we get:  
 
                     x  =  ∛ 6  

 
The equation has one real solution
This solution is  x = ∛6 = 1.8171

Solving a Single Variable Equation :

 6.4      Solve  :    3x3+2 = 0 

 
Subtract  2  from both sides of the equation : 
 
                     3x3 = -2
Divide both sides of the equation by 3:
                     x3 = -2/3 = -0.667
When two things are equal, their cube roots are equal. Taking the cube root of the two sides of the equation we get:  
 
                     x  =  ∛ -2/3  

 
Negative numbers have real cube roots.
  -2/3 = ∛ -1• 2/3  = ∛ -1 • ∛ 2/3  =(-1)•∛ 2/3 

The equation has one real solution, a negative number This solution is  x = ∛ -0.667 = -0.87358

Supplement : Solving Quadratic Equation Directly

Solving    3x6-16x3-12  = 0   directly 

Earlier we factored this polynomial by splitting the middle term. let us now solve the equation by Completing The Square and by using the Quadratic Formula

Solving a Single Variable Equation :

Equations which are reducible to quadratic :

 7.1     Solve   3x6-16x3-12 = 0

This equation is reducible to quadratic. What this means is that using a new variable, we can rewrite this equation as a quadratic equation Using  w , such that  w = x3  transforms the equation into :
 3w2-16w-12 = 0

Solving this new equation using the quadratic formula we get two real solutions :
   6.0000  or  -0.6667

Now that we know the value(s) of  w , we can calculate  x  since  x  is  ∛ w  

Doing just this we discover that the solutions of
   3x6-16x3-12 = 0
  are either : 
    x = ∛ 6.000 = 1.8171
   or:
  x = ∛-0.667 = -0.8736

Two solutions were found :

  1.  x = ∛ -0.667 = -0.87358
  2.  x = ∛6 = 1.8171

Why learn this

Latest Related Drills Solved