Enter an equation or problem
Camera input is not recognized!

Solution - Adding, subtracting and finding the least common multiple

x=59thfo(0.203)=0.97336
x=59throotof(0.203)=0.97336

Step by Step Solution

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "0.41" was replaced by "(41/100)". 3 more similar replacement(s)

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

 ((252731/1000)*x)/((252731/1000)*x^60*12)-((41/100))=0 

Step by step solution :

Step  1  :

             41
 Simplify   ———
            100

Equation at the end of step  1  :

  252731   252731             41
  ——————•x)——————•(x60))•12)-———  = 0 
   1000 ((  1000             100

Step  2  :

252731 Simplify —————— 1000

Equation at the end of step  2  :

  252731   252731           41
  ——————•x)——————•x60)•12)-———  = 0 
   1000 ((  1000           100

Step  3  :

Equation at the end of step  3  :

  252731         252731x60           41
  —————— • x) ÷ (————————— • 12) -  ———  = 0 
   1000            1000             100

Step  4  :

Dividing exponents :

 4.1    22   divided by   23   = 2(2 - 3) = 2(-1) = 1/21 = 1/2

Equation at the end of step  4  :

  252731        (252731•3x60)     41
  —————— • x) ÷ ————————————— -  ———  = 0 
   1000              250         100

Step  5  :

            252731
 Simplify   ——————
             1000 

Equation at the end of step  5  :

  252731        (252731•3x60)     41
  —————— • x) ÷ ————————————— -  ———  = 0 
   1000              250         100

Step  6  :

         252731x      (252731•3x60)
 Divide  ———————  by  —————————————
          1000             250     


 6.1    Dividing fractions

To divide fractions, write the divison as multiplication by the reciprocal of the divisor :

252731x     (252731•3x60)       252731x          250     
———————  ÷  —————————————   =   ———————  •  —————————————
 1000            250             1000       (252731•3x60)

Dividing exponential expressions :

 6.2    x1 divided by x60 = x(1 - 60) = x(-59) = 1/x59

Dividing exponents :

 6.3    21   divided by   23   = 2(1 - 3) = 2(-2) = 1/22

Canceling Out :

 6.4      Canceling out  53 as it appears on both sides of the fraction line

Canceling Out :

 6.5      Canceling out  252731  as it appears on both sides of the fraction line

Equation at the end of step  6  :

    1       41
  ————— -  ———  = 0 
  12x59    100

Step  7  :

Calculating the Least Common Multiple :

 7.1    Find the Least Common Multiple

      The left denominator is :       12x59 

      The right denominator is :       100 

        Number of times each prime factor
        appears in the factorization of:
 Prime 
 Factor 
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
2222
3101
5022
 Product of all 
 Prime Factors 
12100300

                  Number of times each Algebraic Factor
            appears in the factorization of:
    Algebraic    
    Factor    
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
 x 59059


      Least Common Multiple:
      300x59 

Calculating Multipliers :

 7.2    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 25

   Right_M = L.C.M / R_Deno = 3x59

Making Equivalent Fractions :

 7.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

   L. Mult. • L. Num.        25  
   ——————————————————  =   ——————
         L.C.M             300x59

   R. Mult. • R. Num.      41 • 3x59
   ——————————————————  =   —————————
         L.C.M              300x59  

Adding fractions that have a common denominator :

 7.4       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 25 - (41 • 3x59)     25 - 123x59
 ————————————————  =  ———————————
      300x59            300x59   

Equation at the end of step  7  :

  25 - 123x59
  ———————————  = 0 
    300x59   

Step  8  :

When a fraction equals zero :

 8.1    When a fraction equals zero ...

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.

Here's how:

  25-123x59
  ————————— • 300x59 = 0 • 300x59
   300x59  

Now, on the left hand side, the  300x59  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   25-123x59  = 0

Solving a Single Variable Equation :

 8.2      Solve  :    -123x59+25 = 0 

 
Subtract  25  from both sides of the equation : 
 
                     -123x59 = -25
Multiply both sides of the equation by (-1) :  123x59 = 25


Divide both sides of the equation by 123:
                     x59 = 25/123 = 0.203
                     x  =  59th root of (25/123) 

 
The equation has one real solution
This solution is  x = 59th root of ( 0.203) = 0.97336

One solution was found :

                   x = 59th root of ( 0.203) = 0.97336

Why learn this

Latest Related Drills Solved