Enter an equation or problem
Camera input is not recognized!

Solution - Simplification or other simple results

(23x24)(x1)(x2+x+1)
(2*3x^24)*(x-1)*(x^2+x+1)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  (((2•(x2))•x)-2)•(3x24•1)

Step  2  :

Equation at the end of step  2  :

  ((2x2 • x) -  2) • 3x24

Step  3  :

Step  4  :

Pulling out like terms :

 4.1     Pull out like factors :

   2x3 - 2  =   2 • (x3 - 1) 

Trying to factor as a Difference of Cubes:

 4.2      Factoring:  x3 - 1 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  1  is the cube of   1 
Check :  x3 is the cube of   x1

Factorization is :
             (x - 1)  •  (x2 + x + 1) 

Trying to factor by splitting the middle term

 4.3     Factoring  x2 + x + 1 

The first term is,  x2  its coefficient is  1 .
The middle term is,  +x  its coefficient is  1 .
The last term, "the constant", is  +1 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 1 = 1 

Step-2 : Find two factors of  1  whose sum equals the coefficient of the middle term, which is   1 .

     -1   +   -1   =   -2
     1   +   1   =   2


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Final result :

  (2•3x24) • (x - 1) • (x2 + x + 1)

Why learn this

Terms and topics

Latest Related Drills Solved