Enter an equation or problem
Camera input is not recognized!

Solution - Simplification or other simple results

(x1)2(x2+x+1)2
(x-1)^2*(x^2+x+1)^2

Step by Step Solution

Step  1  :

Trying to factor as a Difference of Cubes:

 1.1      Factoring:  x3-1 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  1  is the cube of   1 
Check :  x3 is the cube of   x1

Factorization is :
             (x - 1)  •  (x2 + x + 1) 

Trying to factor by splitting the middle term

 1.2     Factoring  x2 + x + 1 

The first term is,  x2  its coefficient is  1 .
The middle term is,  +x  its coefficient is  1 .
The last term, "the constant", is  +1 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 1 = 1 

Step-2 : Find two factors of  1  whose sum equals the coefficient of the middle term, which is   1 .

     -1   +   -1   =   -2
     1   +   1   =   2


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Trying to factor as a Difference of Cubes:

 1.3      Factoring:  x3-1 

Check :  1  is the cube of   1 
Check :  x3 is the cube of   x1

Factorization is :
             (x - 1)  •  (x2 + x + 1) 

Trying to factor by splitting the middle term

 1.4     Factoring  x2 + x + 1 

The first term is,  x2  its coefficient is  1 .
The middle term is,  +x  its coefficient is  1 .
The last term, "the constant", is  +1 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 1 = 1 

Step-2 : Find two factors of  1  whose sum equals the coefficient of the middle term, which is   1 .

     -1   +   -1   =   -2
     1   +   1   =   2


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Multiplying Exponential Expressions :

 1.5    Multiply  (x-1)  by  (x-1) 

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (x-1)  and the exponents are :
          1 , as  (x-1)  is the same number as  (x-1)1 
 and   1 , as  (x-1)  is the same number as  (x-1)1 
The product is therefore,  (x-1)(1+1) = (x-1)2 

Multiplying Exponential Expressions :

 1.6    Multiply  (x2+x+1)  by  (x2+x+1) 

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (x2+x+1)  and the exponents are :
          1 , as  (x2+x+1)  is the same number as  (x2+x+1)1 
 and   1 , as  (x2+x+1)  is the same number as  (x2+x+1)1 
The product is therefore,  (x2+x+1)(1+1) = (x2+x+1)2 

Final result :

  (x - 1)2 • (x2 + x + 1)2

Why learn this

Terms and topics

Latest Related Drills Solved