Enter an equation or problem
Camera input is not recognized!

Solution - Adding, subtracting and finding the least common multiple

(x-e)/(ex)
(x-e)/(ex)

Step by Step Solution

Step  1  :

            1
 Simplify   —
            x

Equation at the end of step  1  :

  1    1
  — -  —
  e    x

Step  2  :

            1
 Simplify   —
            e

Equation at the end of step  2  :

  1    1
  — -  —
  e    x

Step  3  :

Calculating the Least Common Multiple :

 3.1    Find the Least Common Multiple

      The left denominator is :       e 

      The right denominator is :       x 

                  Number of times each Algebraic Factor
            appears in the factorization of:
    Algebraic    
    Factor    
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
 e 101
 x 011


      Least Common Multiple:
      ex 

Calculating Multipliers :

 3.2    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = x

   Right_M = L.C.M / R_Deno = e

Making Equivalent Fractions :

 3.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

   L. Mult. • L. Num.       x
   ——————————————————  =   ——
         L.C.M             ex

   R. Mult. • R. Num.       e
   ——————————————————  =   ——
         L.C.M             ex

Adding fractions that have a common denominator :

 3.4       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 x - (e)     x - e
 ———————  =  —————
   ex         ex  

Final result :

  x - e
  —————
   ex  

Why learn this

Latest Related Drills Solved