Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(9y2+3y1)(3y2)
(-9y^2+3y-1)*(3y-2)

Step by Step Solution

Step  1  :

 1.1     Evaluate :  (3y-1)3   =    27y3-27y2+9y-1 

Checking for a perfect cube :

 1.2    -27y3+27y2-9y+2  is not a perfect cube

Trying to factor by pulling out :

 1.3      Factoring:  -27y3+27y2-9y+2 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -9y+2 
Group 2:  -27y3+27y2 

Pull out from each group separately :

Group 1:   (-9y+2) • (1) = (9y-2) • (-1)
Group 2:   (y-1) • (-27y2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 1.4    Find roots (zeroes) of :       F(y) = -27y3+27y2-9y+2
Polynomial Roots Calculator is a set of methods aimed at finding values of  y  for which   F(y)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  y  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  -27  and the Trailing Constant is  2.

 
The factor(s) are:

of the Leading Coefficient :  1,3 ,9 ,27
 
of the Trailing Constant :  1 ,2

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      65.00   
     -1     3      -0.33      9.00   
     -1     9      -0.11      3.37   
     -1     27      -0.04      2.37   
     -2     1      -2.00      344.00   
     -2     3      -0.67      28.00   
     -2     9      -0.22      5.63   
     -2     27      -0.07      2.83   
     1     1      1.00      -7.00   
     1     3      0.33      1.00   
     1     9      0.11      1.30   
     1     27      0.04      1.70   
     2     1      2.00      -124.00   
     2     3      0.67      0.00    3y-2 
     2     9      0.22      1.04   
     2     27      0.07      1.47   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   -27y3+27y2-9y+2 
can be divided with  3y-2 

Polynomial Long Division :

 1.5    Polynomial Long Division
Dividing :  -27y3+27y2-9y+2 
                              ("Dividend")
By         :    3y-2    ("Divisor")

dividend- 27y3 + 27y2 - 9y + 2 
- divisor * -9y2 - 27y3 + 18y2     
remainder    9y2 - 9y + 2 
- divisor * 3y1     9y2 - 6y   
remainder    - 3y + 2 
- divisor * -y0     - 3y + 2 
remainder       0

Quotient :  -9y2+3y-1  Remainder:  0 

Trying to factor by splitting the middle term

 1.6     Factoring  9y2-3y+1 

The first term is,  9y2  its coefficient is  9 .
The middle term is,  -3y  its coefficient is  -3 .
The last term, "the constant", is  +1 

Step-1 : Multiply the coefficient of the first term by the constant   9 • 1 = 9 

Step-2 : Find two factors of  9  whose sum equals the coefficient of the middle term, which is   -3 .

     -9   +   -1   =   -10
     -3   +   -3   =   -6
     -1   +   -9   =   -10
     1   +   9   =   10
     3   +   3   =   6
     9   +   1   =   10


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Final result :

  (-9y2 + 3y - 1) • (3y - 2)

Why learn this

Latest Related Drills Solved