Enter an equation or problem
Camera input is not recognized!

Solution - Nonlinear equations

b=0.00001.0801i
b=0.0000-1.0801i
b=0.0000+1.0801i
b=0.0000+1.0801i
b=0
b=0

Other Ways to Solve

Nonlinear equations

Step by Step Solution

Reformatting the input :

Changes made to your input should not affect the solution:

 (1): "b1"   was replaced by   "b^1". 

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

                     14*b^1-(-12*b^3)=0 

Step by step solution :

Step  1  :

Equation at the end of step  1  :

  (14 • (b1)) -  (0 -  (22•3b3))  = 0 

Step  2  :

Equation at the end of step  2  :

  (2•7b) -  ( -22•3b3)  = 0 

Step  3  :

Step  4  :

Pulling out like terms :

 4.1     Pull out like factors :

   12b3 + 14b  =   2b • (6b2 + 7) 

Polynomial Roots Calculator :

 4.2    Find roots (zeroes) of :       F(b) = 6b2 + 7
Polynomial Roots Calculator is a set of methods aimed at finding values of  b  for which   F(b)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  b  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  6  and the Trailing Constant is  7.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,6
 
of the Trailing Constant :  1 ,7

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      13.00   
     -1     2      -0.50      8.50   
     -1     3      -0.33      7.67   
     -1     6      -0.17      7.17   
     -7     1      -7.00      301.00   
     -7     2      -3.50      80.50   
     -7     3      -2.33      39.67   
     -7     6      -1.17      15.17   
     1     1      1.00      13.00   
     1     2      0.50      8.50   
     1     3      0.33      7.67   
     1     6      0.17      7.17   
     7     1      7.00      301.00   
     7     2      3.50      80.50   
     7     3      2.33      39.67   
     7     6      1.17      15.17   


Polynomial Roots Calculator found no rational roots

Equation at the end of step  4  :

  2b • (6b2 + 7)  = 0 

Step  5  :

Theory - Roots of a product :

 5.1    A product of several terms equals zero. 

 
When a product of two or more terms equals zero, then at least one of the terms must be zero. 

 
We shall now solve each term = 0 separately 

 
In other words, we are going to solve as many equations as there are terms in the product 

 
Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation :

 5.2      Solve  :    2b = 0 

 
Divide both sides of the equation by 2:
                     b = 0

Solving a Single Variable Equation :

 5.3      Solve  :    6b2+7 = 0 

 
Subtract  7  from both sides of the equation : 
 
                     6b2 = -7
Divide both sides of the equation by 6:
                     b2 = -7/6 = -1.167
 
 
When two things are equal, their square roots are equal. Taking the square root of the two sides of the equation we get:  
 
                     b  =  ± √ -7/6  

 
In Math,  i  is called the imaginary unit. It satisfies   i2  =-1. Both   i   and   -i   are the square roots of   -1 

Accordingly,  √ -7/6  =
                    √ -1• 7/6   =
                    √ -1 •√  7/6   =
                    i •  √ 7/6

The equation has no real solutions. It has 2 imaginary, or complex solutions.

                      b=  0.0000 + 1.0801
                      b=  0.0000 - 1.0801

Three solutions were found :

  1.   b=  0.0000 - 1.0801
  2.   b=  0.0000 + 1.0801
  3.  b = 0

Why learn this

Latest Related Drills Solved