Enter an equation or problem
Camera input is not recognized!

Solution - Linear equations with one unknown

x=root[3]0.062=0.39685
x=root[3]{0.062}=0.39685

Step by Step Solution

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

                     48*x^3-(3)=0 

Step by step solution :

Step  1  :

Equation at the end of step  1  :

  (24•3x3) -  3  = 0 

Step  2  :

Step  3  :

Pulling out like terms :

 3.1     Pull out like factors :

   48x3 - 3  =   3 • (16x3 - 1) 

Trying to factor as a Difference of Cubes:

 3.2      Factoring:  16x3 - 1 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  16  is not a cube !!

Ruling : Binomial can not be factored as the difference of two perfect cubes

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = 16x3 - 1
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  16  and the Trailing Constant is  -1.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,4 ,8 ,16
 
of the Trailing Constant :  1

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -17.00   
     -1     2      -0.50      -3.00   
     -1     4      -0.25      -1.25   
     -1     8      -0.12      -1.03   
     -1     16      -0.06      -1.00   
     1     1      1.00      15.00   
     1     2      0.50      1.00   
     1     4      0.25      -0.75   
     1     8      0.12      -0.97   
     1     16      0.06      -1.00   


Polynomial Roots Calculator found no rational roots

Equation at the end of step  3  :

  3 • (16x3 - 1)  = 0 

Step  4  :

Equations which are never true :

 4.1      Solve :    3   =  0

This equation has no solution.
A a non-zero constant never equals zero.

Solving a Single Variable Equation :

 4.2      Solve  :    16x3-1 = 0 

 
Add  1  to both sides of the equation : 
 
                     16x3 = 1
Divide both sides of the equation by 16:
                     x3 = 1/16 = 0.062
When two things are equal, their cube roots are equal. Taking the cube root of the two sides of the equation we get:  
 
                     x  =  ∛ 1/16  

 
The equation has one real solution
This solution is  x = ∛ 0.062 = 0.39685

One solution was found :

                   x = ∛ 0.062 = 0.39685

Why learn this

Latest Related Drills Solved