Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

6x(4x+1)(x+2)(2x3)
6x*(4x+1)*(x+2)*(2x-3)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  (((48•(x4))+(36•(x3)))-(2•3•23x2))-36x

Step  2  :

Equation at the end of step  2  :

  (((48 • (x4)) +  (22•32x3)) -  (2•3•23x2)) -  36x

Step  3  :

Equation at the end of step  3  :

  (((24•3x4) +  (22•32x3)) -  (2•3•23x2)) -  36x

Step  4  :

Step  5  :

Pulling out like terms :

 5.1     Pull out like factors :

   48x4 + 36x3 - 138x2 - 36x  = 

  6x • (8x3 + 6x2 - 23x - 6) 

Checking for a perfect cube :

 5.2    8x3 + 6x2 - 23x - 6  is not a perfect cube

Trying to factor by pulling out :

 5.3      Factoring:  8x3 + 6x2 - 23x - 6 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -23x - 6 
Group 2:  6x2 + 8x3 

Pull out from each group separately :

Group 1:   (23x + 6) • (-1)
Group 2:   (4x + 3) • (2x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 5.4    Find roots (zeroes) of :       F(x) = 8x3 + 6x2 - 23x - 6
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  8  and the Trailing Constant is  -6.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,4 ,8
 
of the Trailing Constant :  1 ,2 ,3 ,6

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      15.00   
     -1     2      -0.50      6.00   
     -1     4      -0.25      0.00    4x + 1 
     -1     8      -0.12      -3.05   
     -2     1      -2.00      0.00    x + 2 
     -3     1      -3.00      -99.00   
     -3     2      -1.50      15.00   
     -3     4      -0.75      11.25   
     -3     8      -0.38      3.05   
     -6     1      -6.00     -1380.00   
     1     1      1.00      -15.00   
     1     2      0.50      -15.00   
     1     4      0.25      -11.25   
     1     8      0.12      -8.77   
     2     1      2.00      36.00   
     3     1      3.00      195.00   
     3     2      1.50      0.00    2x - 3 
     3     4      0.75      -16.50   
     3     8      0.38      -13.36   
     6     1      6.00      1800.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   8x3 + 6x2 - 23x - 6 
can be divided by 3 different polynomials,including by  2x - 3 

Polynomial Long Division :

 5.5    Polynomial Long Division
Dividing :  8x3 + 6x2 - 23x - 6 
                              ("Dividend")
By         :    2x - 3    ("Divisor")

dividend  8x3 + 6x2 - 23x - 6 
- divisor * 4x2   8x3 - 12x2     
remainder    18x2 - 23x - 6 
- divisor * 9x1     18x2 - 27x   
remainder      4x - 6 
- divisor * 2x0       4x - 6 
remainder       0

Quotient :  4x2+9x+2  Remainder:  0 

Trying to factor by splitting the middle term

 5.6     Factoring  4x2+9x+2 

The first term is,  4x2  its coefficient is  4 .
The middle term is,  +9x  its coefficient is  9 .
The last term, "the constant", is  +2 

Step-1 : Multiply the coefficient of the first term by the constant   4 • 2 = 8 

Step-2 : Find two factors of  8  whose sum equals the coefficient of the middle term, which is   9 .

     -8   +   -1   =   -9
     -4   +   -2   =   -6
     -2   +   -4   =   -6
     -1   +   -8   =   -9
     1   +   8   =   9   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  1  and  8 
                     4x2 + 1x + 8x + 2

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x • (4x+1)
              Add up the last 2 terms, pulling out common factors :
                    2 • (4x+1)
Step-5 : Add up the four terms of step 4 :
                    (x+2)  •  (4x+1)
             Which is the desired factorization

Final result :

  6x • (4x + 1) • (x + 2) • (2x - 3)

Why learn this

Latest Related Drills Solved