Enter an equation or problem
Camera input is not recognized!

Solution - Simplification or other simple results

8(2a3)(4a2+6a+9)
8*(2a-3)*(4a^2+6a+9)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  26a3 -  216

Step  2  :

Step  3  :

Pulling out like terms :

 3.1     Pull out like factors :

   64a3 - 216  =   8 • (8a3 - 27) 

Trying to factor as a Difference of Cubes:

 3.2      Factoring:  8a3 - 27 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  8  is the cube of  2 

Check :  27  is the cube of   3 
Check :  a3 is the cube of   a1

Factorization is :
             (2a - 3)  •  (4a2 + 6a + 9) 

Trying to factor by splitting the middle term

 3.3     Factoring  4a2 + 6a + 9 

The first term is,  4a2  its coefficient is  4 .
The middle term is,  +6a  its coefficient is  6 .
The last term, "the constant", is  +9 

Step-1 : Multiply the coefficient of the first term by the constant   4 • 9 = 36 

Step-2 : Find two factors of  36  whose sum equals the coefficient of the middle term, which is   6 .

     -36   +   -1   =   -37
     -18   +   -2   =   -20
     -12   +   -3   =   -15
     -9   +   -4   =   -13
     -6   +   -6   =   -12
     -4   +   -9   =   -13


For tidiness, printing of 12 lines which failed to find two such factors, was suppressed

Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Final result :

  8 • (2a - 3) • (4a2 + 6a + 9)

Why learn this

Terms and topics

Latest Related Drills Solved