Enter an equation or problem
Camera input is not recognized!

Solution - Simplification or other simple results

(4y1)(16y2+4y+1)
(4y-1)*(16y^2+4y+1)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  26y3 -  1

Step  2  :

Trying to factor as a Difference of Cubes:

 2.1      Factoring:  64y3-1 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  64  is the cube of  4 

Check :  1  is the cube of   1 
Check :  y3 is the cube of   y1

Factorization is :
             (4y - 1)  •  (16y2 + 4y + 1) 

Trying to factor by splitting the middle term

 2.2     Factoring  16y2 + 4y + 1 

The first term is,  16y2  its coefficient is  16 .
The middle term is,  +4y  its coefficient is  4 .
The last term, "the constant", is  +1 

Step-1 : Multiply the coefficient of the first term by the constant   16 • 1 = 16 

Step-2 : Find two factors of  16  whose sum equals the coefficient of the middle term, which is   4 .

     -16   +   -1   =   -17
     -8   +   -2   =   -10
     -4   +   -4   =   -8
     -2   +   -8   =   -10
     -1   +   -16   =   -17
     1   +   16   =   17
     2   +   8   =   10
     4   +   4   =   8
     8   +   2   =   10
     16   +   1   =   17


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Final result :

  (4y - 1) • (16y2 + 4y + 1)

Why learn this

Terms and topics

Latest Related Drills Solved