Enter an equation or problem
Camera input is not recognized!

Solution - Simplification or other simple results

6p335
6p^3-35

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  ((2•3p2) • p) -  35

Step  2  :

Trying to factor as a Difference of Cubes:

 2.1      Factoring:  6p3-35 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  6  is not a cube !!

Ruling : Binomial can not be factored as the difference of two perfect cubes

Polynomial Roots Calculator :

 2.2    Find roots (zeroes) of :       F(p) = 6p3-35
Polynomial Roots Calculator is a set of methods aimed at finding values of  p  for which   F(p)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  p  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  6  and the Trailing Constant is  -35.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,6
 
of the Trailing Constant :  1 ,5 ,7 ,35

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -41.00   
     -1     2      -0.50      -35.75   
     -1     3      -0.33      -35.22   
     -1     6      -0.17      -35.03   
     -5     1      -5.00      -785.00   


Note - For tidiness, printing of 27 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Final result :

  6p3 - 35

Why learn this

Terms and topics

Latest Related Drills Solved