Enter an equation or problem
Camera input is not recognized!

Solution - Factoring multivariable polynomials

(ab)(a2+ab+b2)
(a-b)*(a^2+ab+b^2)

Step by Step Solution

Step  1  :

Trying to factor as a Difference of Cubes:

 1.1      Factoring:  a3-b3 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  a3 is the cube of   a1

Check :  b3 is the cube of   b1

Factorization is :
             (a - b)  •  (a2 + ab + b2) 

Trying to factor a multi variable polynomial :

 1.2    Factoring    a2 + ab + b2 

Try to factor this multi-variable trinomial using trial and error 

 
Factorization fails

Final result :

  (a - b) • (a2 + ab + b2)

Why learn this

Latest Related Drills Solved