Enter an equation or problem
Camera input is not recognized!

Solution - Other Factorizations

d(5d71s3t618)
-d*(5d^71s^3-t^618)

Other Ways to Solve

Other Factorizations

Step by Step Solution

Reformatting the input :

Changes made to your input should not affect the solution:

 (1): "d7"   was replaced by   "d^7". 

Step  1  :

Equation at the end of step  1  :

  (d • (t618)) -  (5s3 • d72)

Step  2  :

Step  3  :

Pulling out like terms :

 3.1     Pull out like factors :

   dt618 - 5d72s3  =   -d • (5d71s3 - t618) 

Trying to factor as a Difference of Squares :

 3.2      Factoring:  5d71s3 - t618 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  5  is not a square !!

Ruling : Binomial can not be factored as the
difference of two perfect squares

Trying to factor as a Difference of Cubes:

 3.3      Factoring:  5d71s3 - t618 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  5  is not a cube !!

Ruling : Binomial can not be factored as the difference of two perfect cubes

Final result :

  -d • (5d71s3 - t618)

Why learn this

Latest Related Drills Solved