Enter an equation or problem
Camera input is not recognized!

Solution - Simplification or other simple results

(m1312+1)(1+m656)(1+m328)(m164+1)(m82+1)(m41+1)(m411)
(m^1312+1)*(1+m^656)*(1+m^328)*(m^164+1)*(m^82+1)*(m^41+1)*(m^41-1)

Step by Step Solution

Step  1  :

Trying to factor as a Difference of Squares :

 1.1      Factoring:  m2624-1 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check : 1 is the square of 1
Check :  m2624  is the square of  m1312 

Factorization is :       (m1312 + 1)  •  (m1312 - 1) 

Trying to factor as a Difference of Squares :

 1.2      Factoring:  m1312 - 1 

Check : 1 is the square of 1
Check :  m1312  is the square of  m656 

Factorization is :       (m656 + 1)  •  (m656 - 1) 

Trying to factor as a Difference of Squares :

 1.3      Factoring:  m656 - 1 

Check : 1 is the square of 1
Check :  m656  is the square of  m328 

Factorization is :       (m328 + 1)  •  (m328 - 1) 

Trying to factor as a Difference of Squares :

 1.4      Factoring:  m328 - 1 

Check : 1 is the square of 1
Check :  m328  is the square of  m164 

Factorization is :       (m164 + 1)  •  (m164 - 1) 

Trying to factor as a Difference of Squares :

 1.5      Factoring:  m164 - 1 

Check : 1 is the square of 1
Check :  m164  is the square of  m82 

Factorization is :       (m82 + 1)  •  (m82 - 1) 

Trying to factor as a Difference of Squares :

 1.6      Factoring:  m82 - 1 

Check : 1 is the square of 1
Check :  m82  is the square of  m41 

Factorization is :       (m41 + 1)  •  (m41 - 1) 

Final result :

  (m1312+1)•(1+m656)•(1+m328)•(m164+1)•(m82+1)•(m41+1)•(m41-1)

Why learn this

Terms and topics

Latest Related Drills Solved