Enter an equation or problem
Camera input is not recognized!

Solution - Factoring binomials using the difference of squares

(m947+1)(m1894m947+1)(m9471)(m1894+m947+1)
(m^947+1)*(m^1894-m^947+1)*(m^947-1)*(m^1894+m^947+1)

Step by Step Solution

Step  1  :

Trying to factor as a Difference of Squares :

 1.1      Factoring:  m5682-1 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check : 1 is the square of 1
Check :  m5682  is the square of  m2841 

Factorization is :       (m2841 + 1)  •  (m2841 - 1) 

Trying to factor as a Sum of Cubes :

 1.2      Factoring:  m2841 + 1 

Theory : A sum of two perfect cubes,  a3 + b3 can be factored into  :
             (a+b) • (a2-ab+b2)
Proof  : (a+b) • (a2-ab+b2) =
    a3-a2b+ab2+ba2-b2a+b3 =
    a3+(a2b-ba2)+(ab2-b2a)+b3=
    a3+0+0+b3=
    a3+b3


Check :  1  is the cube of   1 
Check :  m2841 is the cube of   m947

Factorization is :
             (m947 + 1)  •  (m1894 - m947 + 1) 

Trying to factor by splitting the middle term

 1.3     Factoring  m1894 - m947 + 1 

The first term is,  m1894  its coefficient is  1 .
The middle term is,  -m947  its coefficient is  -1 .
The last term, "the constant", is  +1 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 1 = 1 

Step-2 : Find two factors of  1  whose sum equals the coefficient of the middle term, which is   -1 .

     -1   +   -1   =   -2
     1   +   1   =   2


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Trying to factor as a Difference of Cubes:

 1.4      Factoring:  m2841-1 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  1  is the cube of   1 
Check :  m2841 is the cube of   m947

Factorization is :
             (m947 - 1)  •  (m1894 + m947 + 1) 

Trying to factor by splitting the middle term

 1.5     Factoring  m1894 + m947 + 1 

The first term is,  m1894  its coefficient is  1 .
The middle term is,  +m947  its coefficient is  1 .
The last term, "the constant", is  +1 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 1 = 1 

Step-2 : Find two factors of  1  whose sum equals the coefficient of the middle term, which is   1 .

     -1   +   -1   =   -2
     1   +   1   =   2


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Final result :

  (m947+1)•(m1894-m947+1)•(m947-1)•(m1894+m947+1)

Why learn this

Latest Related Drills Solved