Enter an equation or problem
Camera input is not recognized!

Solution - Factoring multivariable polynomials

(p8708b7)(p8708b7+b14+p17416)
(p^8708-b^7)*(p^8708b^7+b^14+p^17416)

Step by Step Solution

Step  1  :

Trying to factor as a Difference of Squares :

 1.1      Factoring:  p26124-b21 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  p26124  is the square of  p13062 

Check :  b21   is not a square !!
Ruling : Binomial can not be factored as the difference of two perfect squares

Trying to factor as a Difference of Cubes:

 1.2      Factoring:  p26124-b21 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  p26124 is the cube of   p8708

Check :  b21 is the cube of   b7

Factorization is :
             (p8708 - b7)  •  (p17416 + p8708b7 + b14) 

Trying to factor as a Difference of Squares :

 1.3      Factoring:  p8708 - b7 

Check :  p8708  is the square of  p4354 

Check :  b7   is not a square !!
Ruling : Binomial can not be factored as the difference of two perfect squares

Trying to factor a multi variable polynomial :

 1.4    Factoring    p17416 + p8708b7 + b14 

Try to factor this multi-variable trinomial using trial and error 

 
Factorization fails

Final result :

  (p8708 - b7) • (p8708b7 + b14 + p17416)

Why learn this

Latest Related Drills Solved