Enter an equation or problem
Camera input is not recognized!

Solution - Factoring binomials using the difference of squares

(r3+2)(r32)
(r^3+2)*(r^3-2)

Step by Step Solution

Step  1  :

Trying to factor as a Difference of Squares :

 1.1      Factoring:  r6-4 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check : 4 is the square of 2
Check :  r6  is the square of  r3 

Factorization is :       (r3 + 2)  •  (r3 - 2) 

Trying to factor as a Sum of Cubes :

 1.2      Factoring:  r3 + 2 

Theory : A sum of two perfect cubes,  a3 + b3 can be factored into  :
             (a+b) • (a2-ab+b2)
Proof  : (a+b) • (a2-ab+b2) =
    a3-a2b+ab2+ba2-b2a+b3 =
    a3+(a2b-ba2)+(ab2-b2a)+b3=
    a3+0+0+b3=
    a3+b3


Check :  2  is not a cube !!
Ruling : Binomial can not be factored as the difference of two perfect cubes

Polynomial Roots Calculator :

 1.3    Find roots (zeroes) of :       F(r) = r3 + 2
Polynomial Roots Calculator is a set of methods aimed at finding values of  r  for which   F(r)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  r  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  2.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      1.00   
     -2     1      -2.00      -6.00   
     1     1      1.00      3.00   
     2     1      2.00      10.00   


Polynomial Roots Calculator found no rational roots

Trying to factor as a Difference of Cubes:

 1.4      Factoring:  r3 - 2 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  2  is not a cube !!
Ruling : Binomial can not be factored as the difference of two perfect cubes

Polynomial Roots Calculator :

 1.5    Find roots (zeroes) of :       F(r) = r3 - 2

     See theory in step 1.3
In this case, the Leading Coefficient is  1  and the Trailing Constant is  -2.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -3.00   
     -2     1      -2.00      -10.00   
     1     1      1.00      -1.00   
     2     1      2.00      6.00   


Polynomial Roots Calculator found no rational roots

Final result :

  (r3 + 2) • (r3 - 2)

Why learn this

Latest Related Drills Solved