Enter an equation or problem
Camera input is not recognized!

Solution - Simplification or other simple results

(s1683)(3s168+9+s336)
(s^168-3)*(3s^168+9+s^336)

Step by Step Solution

Step  1  :

Trying to factor as a Difference of Squares :

 1.1      Factoring:  s504-27 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check : 27 is not a square !!

Ruling : Binomial can not be factored as the difference of two perfect squares.

Trying to factor as a Difference of Cubes:

 1.2      Factoring:  s504-27 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  27  is the cube of   3 
Check :  s504 is the cube of   s168

Factorization is :
             (s168 - 3)  •  (s336 + 3s168 + 9) 

Trying to factor as a Difference of Squares :

 1.3      Factoring:  s168 - 3 

Check : 3 is not a square !!

Ruling : Binomial can not be factored as the difference of two perfect squares.

Trying to factor as a Difference of Cubes:

 1.4      Factoring:  s168 - 3 

Check :  3  is not a cube !!
Ruling : Binomial can not be factored as the difference of two perfect cubes

Trying to factor by splitting the middle term

 1.5     Factoring  3s168 + 9 + s336 

The first term is,  3s168  its coefficient is  1 .
The middle term is,  +9  its coefficient is  3 .
The last term, "the constant", is  +s336 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 9 = 9 

Step-2 : Find two factors of  9  whose sum equals the coefficient of the middle term, which is   3 .

     -9   +   -1   =   -10
     -3   +   -3   =   -6
     -1   +   -9   =   -10
     1   +   9   =   10
     3   +   3   =   6
     9   +   1   =   10


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Final result :

  (s168 - 3) • (3s168 + 9 + s336)

Why learn this

Terms and topics

Latest Related Drills Solved