Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

x(x10+1)(x4x3+x2x+1)(x+1)(x4+x3+x2+x+1)(x1)
x*(x^10+1)*(x^4-x^3+x^2-x+1)*(x+1)*(x^4+x^3+x^2+x+1)*(x-1)

Step by Step Solution

Step  1  :

Step  2  :

Pulling out like terms :

 2.1     Pull out like factors :

   x21 - x  =   x • (x20 - 1) 

Trying to factor as a Difference of Squares :

 2.2      Factoring:  x20 - 1 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check : 1 is the square of 1
Check :  x20  is the square of  x10 

Factorization is :       (x10 + 1)  •  (x10 - 1) 

Trying to factor as a Difference of Squares :

 2.3      Factoring:  x10 - 1 

Check : 1 is the square of 1
Check :  x10  is the square of  x5 

Factorization is :       (x5 + 1)  •  (x5 - 1) 

Polynomial Roots Calculator :

 2.4    Find roots (zeroes) of :       F(x) = x5 + 1
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  1.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      0.00    x + 1 
     1     1      1.00      2.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x5 + 1 
can be divided with  x + 1 

Polynomial Long Division :

 2.5    Polynomial Long Division
Dividing :  x5 + 1 
                              ("Dividend")
By         :    x + 1    ("Divisor")

dividend  x5         + 1 
- divisor * x4   x5 + x4         
remainder  - x4       + 1 
- divisor * -x3   - x4 - x3       
remainder      x3     + 1 
- divisor * x2       x3 + x2     
remainder      - x2   + 1 
- divisor * -x1       - x2 - x   
remainder          x + 1 
- divisor * x0           x + 1 
remainder           0

Quotient :  x4-x3+x2-x+1  Remainder:  0 

Polynomial Roots Calculator :

 2.6    Find roots (zeroes) of :       F(x) = x4-x3+x2-x+1

     See theory in step 2.4
In this case, the Leading Coefficient is  1  and the Trailing Constant is  1.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      5.00   
     1     1      1.00      1.00   


Polynomial Roots Calculator found no rational roots

Polynomial Roots Calculator :

 2.7    Find roots (zeroes) of :       F(x) = x5-1

     See theory in step 2.4
In this case, the Leading Coefficient is  1  and the Trailing Constant is  -1.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -2.00   
     1     1      1.00      0.00    x-1 


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x5-1 
can be divided with  x-1 

Polynomial Long Division :

 2.8    Polynomial Long Division
Dividing :  x5-1 
                              ("Dividend")
By         :    x-1    ("Divisor")

dividend  x5         - 1 
- divisor * x4   x5 - x4         
remainder    x4       - 1 
- divisor * x3     x4 - x3       
remainder      x3     - 1 
- divisor * x2       x3 - x2     
remainder        x2   - 1 
- divisor * x1         x2 - x   
remainder          x - 1 
- divisor * x0           x - 1 
remainder           0

Quotient :  x4+x3+x2+x+1  Remainder:  0 

Polynomial Roots Calculator :

 2.9    Find roots (zeroes) of :       F(x) = x4+x3+x2+x+1

     See theory in step 2.4
In this case, the Leading Coefficient is  1  and the Trailing Constant is  1.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      1.00   
     1     1      1.00      5.00   


Polynomial Roots Calculator found no rational roots

Final result :

  x•(x10+1)•(x4-x3+x2-x+1)•(x+1)•(x4+x3+x2+x+1)•(x-1)

Why learn this

Latest Related Drills Solved