Enter an equation or problem
Camera input is not recognized!

Solution - Factoring binomials using the difference of squares

(x+1)(x2x+1)
(x+1)*(x^2-x+1)

Step by Step Solution

Step  1  :

Trying to factor as a Sum of Cubes :

 1.1      Factoring:  x3+1 

Theory : A sum of two perfect cubes,  a3 + b3 can be factored into  :
             (a+b) • (a2-ab+b2)
Proof  : (a+b) • (a2-ab+b2) =
    a3-a2b+ab2+ba2-b2a+b3 =
    a3+(a2b-ba2)+(ab2-b2a)+b3=
    a3+0+0+b3=
    a3+b3


Check :  1  is the cube of   1 
Check :  x3 is the cube of   x1

Factorization is :
             (x + 1)  •  (x2 - x + 1) 

Trying to factor by splitting the middle term

 1.2     Factoring  x2 - x + 1 

The first term is,  x2  its coefficient is  1 .
The middle term is,  -x  its coefficient is  -1 .
The last term, "the constant", is  +1 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 1 = 1 

Step-2 : Find two factors of  1  whose sum equals the coefficient of the middle term, which is   -1 .

     -1   +   -1   =   -2
     1   +   1   =   2


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Final result :

  (x + 1) • (x2 - x + 1)

Why learn this

Latest Related Drills Solved