Introduce una ecuación o un problema
¡No se reconoce la entrada de la cámara!

Solución - Mínimo común múltiplo (MCM) por factorización de primos

42.989.760
42.989.760

Explicación paso a paso

1. Averiguar los factores primos de 72

Árbol de factores primos de 72: 2, 2, 2, 3 y 3

Los factores primos de 72 son 2, 2, 2, 3 y 3.

2. Averiguar los factores primos de 472

Árbol de factores primos de 472: 2, 2, 2 y 59

Los factores primos de 472 son 2, 2, 2 y 59.

3. Averiguar los factores primos de 960

Árbol de factores primos de 960: 2, 2, 2, 2, 2, 2, 3 y 5

Los factores primos de 960 son 2, 2, 2, 2, 2, 2, 3 y 5.

4. Averiguar los factores primos de 220

Árbol de factores primos de 220: 2, 2, 5 y 11

Los factores primos de 220 son 2, 2, 5 y 11.

5. Averiguar los factores primos de 828

Árbol de factores primos de 828: 2, 2, 3, 3 y 23

Los factores primos de 828 son 2, 2, 3, 3 y 23.

6. Hacer una tabla de factores primos

Determina el número de veces máximo que aparece cada factor primo (2, 3, 5, 11, 23, 59) al factorizar los números dados:

Factor primoNúmero72 472 960 220 828 Aparición máx.
2336226
3201022
5001101
11000101
23000011
59010001

Los factores primos 5, 11, 23 y 59 aparecen una vez, mientras que 2 y 3 aparecen más de una vez.

7. Calcular el MCM

El mínimo común múltiplo es el producto de todos los factores en la cantidad más grande en que aparecen.

MCM = 222222335112359

MCM = 26325112359

MCM = 42,989,760

El mínimo común múltiplo de 72, 472, 960, 220 y 828 es 42.989.760.

Para qué aprender esto

El mínimo común múltiplo (MCM) puede usarse para sumar o restar fracciones heterogéneas (fracciones con distinto denominador), ya que ayuda a averiguar el mínimo común denominador. El MCM también sirve como herramienta para resolver problemas en los que hay que encontrar el número o la cantidad común más baja entre diferentes cantidades de cosas.