Introduce una ecuación o un problema
¡No se reconoce la entrada de la cámara!

Solución - Secuencias geométricas

La razón común es: r=3,269230769230769
r=3,269230769230769
La suma de esta serie es: s=111
s=-111
La fórmula general de esta serie es: an=263,269230769230769n1
a_n=-26*3,269230769230769^(n-1)
El enésimo término de esta serie es: 26,85,277,88461538461536,908,4689349112425,2969,994594902139,9709,597714103147,31742,91560379875,103774,91639703437,339264,14975953544,1109132,797290789
-26,-85,-277,88461538461536,-908,4689349112425,-2969,994594902139,-9709,597714103147,-31742,91560379875,-103774,91639703437,-339264,14975953544,-1109132,797290789

Otras formas de resolver

Secuencias geométricas

Explicación paso a paso

1. Averiguar la razón común

Averigua la razón común dividiendo cualquier término de la secuencia por el término anterior a él:

a2a1=8526=3,269230769230769

La razón común (r) de la secuencia es constante e igual al cociente entre dos términos consecutivos.
r=3,269230769230769

2. Averiguar la suma

5 pasos adicionales

sn=a*((1-rn)/(1-r))

Para averiguar la suma de la serie, introduce el primer término: a=-26, la razón común: r=3,269230769230769 y el número de elementos n=2 en la fórmula de la suma de una serie geométrica:

s2=-26*((1-3,2692307692307692)/(1-3,269230769230769))

s2=-26*((1-10,687869822485206)/(1-3,269230769230769))

s2=-26*(-9,687869822485206/(1-3,269230769230769))

s2=-26*(-9,687869822485206/-2,269230769230769)

s2=264,269230769230769

s2=111

3. Averiguar la fórmula general

an=arn1

Para averiguar la fórmula general de la serie, introduce el primer término: a=26 y la razón común: r=3,269230769230769 en la fórmula de la serie geométrica:

an=263,269230769230769n1

4. Averiguar el enésimo término

Utiliza la fórmula general para averiguar el enésimo término

a1=26

a2=a1·rn1=263,26923076923076921=263,2692307692307691=263,269230769230769=85

a3=a1·rn1=263,26923076923076931=263,2692307692307692=2610,687869822485206=277,88461538461536

a4=a1·rn1=263,26923076923076941=263,2692307692307693=2634,94111288120163=908,4689349112425

a5=a1·rn1=263,26923076923076951=263,2692307692307694=26114,23056134238996=2969,994594902139

a6=a1·rn1=263,26923076923076961=263,2692307692307695=26373,4460659270441=9709,597714103147

a7=a1·rn1=263,26923076923076971=263,2692307692307696=261220,881369376875=31742,91560379875

a8=a1·rn1=263,26923076923076981=263,2692307692307697=263991,3429383474754=103774,91639703437

a9=a1·rn1=263,26923076923076991=263,2692307692307698=2613048,621144597517=339264,14975953544

a10=a1·rn1=263,269230769230769101=263,2692307692307699=2642658,95374195342=1109132,797290789

Para qué aprender esto

Las secuencias geométricas se utilizan comúnmente para explicar conceptos en matemáticas, física, ingeniería, biología, economía, informática, finanzas y más, lo que las convierte en una herramienta muy útil para tener en nuestros kits de herramientas. Una de las aplicaciones más comunes de las secuencias geométricas, por ejemplo, es el cálculo de interés compuesto ganado o no pagado, una actividad generalmente asociada con las finanzas que podría significar ganar o perder mucho dinero. Otras aplicaciones incluyen, pero sin duda no se limitan a, el cálculo de la probabilidad, la medición de la radiactividad a lo largo del tiempo y el diseño de edificios.

Conceptos y temas