Introduce una ecuación o un problema
¡No se reconoce la entrada de la cámara!

Solución - Secuencias geométricas

La razón común es: r=1,6
r=-1,6
La suma de esta serie es: s=6
s=-6
La fórmula general de esta serie es: an=101,6n1
a_n=10*-1,6^(n-1)
El enésimo término de esta serie es: 10,16,25,600000000000005,40,96000000000001,65,53600000000002,104,85760000000002,167,77216000000007,268,4354560000001,429,4967296000002,687,1947673600004
10,-16,25,600000000000005,-40,96000000000001,65,53600000000002,-104,85760000000002,167,77216000000007,-268,4354560000001,429,4967296000002,-687,1947673600004

Otras formas de resolver

Secuencias geométricas

Explicación paso a paso

1. Averiguar la razón común

Averigua la razón común dividiendo cualquier término de la secuencia por el término anterior a él:

a2a1=1610=1,6

La razón común (r) de la secuencia es constante e igual al cociente entre dos términos consecutivos.
r=1,6

2. Averiguar la suma

5 pasos adicionales

sn=a*((1-rn)/(1-r))

Para averiguar la suma de la serie, introduce el primer término: a=10, la razón común: r=-1,6 y el número de elementos n=2 en la fórmula de la suma de una serie geométrica:

s2=10*((1--1,62)/(1--1,6))

s2=10*((1-2,5600000000000005)/(1--1,6))

s2=10*(-1,5600000000000005/(1--1,6))

s2=10*(-1,5600000000000005/2,6)

s2=100,6000000000000002

s2=6,000000000000002

3. Averiguar la fórmula general

an=arn1

Para averiguar la fórmula general de la serie, introduce el primer término: a=10 y la razón común: r=1,6 en la fórmula de la serie geométrica:

an=101,6n1

4. Averiguar el enésimo término

Utiliza la fórmula general para averiguar el enésimo término

a1=10

a2=a1·rn1=101,621=101,61=101,6=16

a3=a1·rn1=101,631=101,62=102,5600000000000005=25,600000000000005

a4=a1·rn1=101,641=101,63=104,096000000000001=40,96000000000001

a5=a1·rn1=101,651=101,64=106,553600000000001=65,53600000000002

a6=a1·rn1=101,661=101,65=1010,485760000000003=104,85760000000002

a7=a1·rn1=101,671=101,66=1016,777216000000006=167,77216000000007

a8=a1·rn1=101,681=101,67=1026,84354560000001=268,4354560000001

a9=a1·rn1=101,691=101,68=1042,94967296000002=429,4967296000002

a10=a1·rn1=101,6101=101,69=1068,71947673600003=687,1947673600004

Para qué aprender esto

Las secuencias geométricas se utilizan comúnmente para explicar conceptos en matemáticas, física, ingeniería, biología, economía, informática, finanzas y más, lo que las convierte en una herramienta muy útil para tener en nuestros kits de herramientas. Una de las aplicaciones más comunes de las secuencias geométricas, por ejemplo, es el cálculo de interés compuesto ganado o no pagado, una actividad generalmente asociada con las finanzas que podría significar ganar o perder mucho dinero. Otras aplicaciones incluyen, pero sin duda no se limitan a, el cálculo de la probabilidad, la medición de la radiactividad a lo largo del tiempo y el diseño de edificios.

Conceptos y temas