Maglagay ng Ekwasyon o Problema
Hindi nakikita ang input ng camera!

Solusyon - Mga Geometric na Seokwens

Ang common na ratio ay: r=3
r=-3
Ang sum ng series na ito ay: s=107163
s=-107163
Ang pangkalahatang anyo ng series na ito ay: an=153093n1
a_n=-15309*-3^(n-1)
Ang nth na term ng series na ito ay: 15309,45927,137781,413343,1240029,3720087,11160261,33480783,100442349,301327047
-15309,45927,-137781,413343,-1240029,3720087,-11160261,33480783,-100442349,301327047

Iba pang Mga Paraan para Malutas

Mga Geometric na Seokwens

Hakbang-sa-hakbang na paliwanag

1. Hanapin ang common na ratio

Hanapin ang common na ratio sa pamamagitan ng paghahati ng anumang term sa sequence sa term na nauna dito:

a2a1=4592715309=3

a3a2=13778145927=3

Ang common na ratio (r) ng sequence ay constant at katumbas ng quotient ng dalawang sunud-sunod na terms.
r=3

2. Hanapin ang sum

5 additional steps

sn=a*((1-rn)/(1-r))

Upang mahanap ang sum ng series, ipasok ang unang term: a=-15309, ang common na ratio: r=-3, at ang bilang ng mga elemento n=3 sa geometric series sum formula:

s3=-15309*((1--33)/(1--3))

s3=-15309*((1--27)/(1--3))

s3=-15309*(28/(1--3))

s3=-15309*(28/4)

s3=153097

s3=107163

3. Hanapin ang pangkalahatang anyo

an=arn1

Upang mahanap ang pangkalahatang anyo ng series, ipasok ang unang term: a=15309 at ang common na ratio: r=3 sa formula para sa geometric series:

an=153093n1

4. Hanapin ang nth na term

Gumamit ng pangkalahatang anyo para mahanap ang pang-nth na tuntunin

a1=15309

a2=a1·rn1=15309321=1530931=153093=45927

a3=a1·rn1=15309331=1530932=153099=137781

a4=a1·rn1=15309341=1530933=1530927=413343

a5=a1·rn1=15309351=1530934=1530981=1240029

a6=a1·rn1=15309361=1530935=15309243=3720087

a7=a1·rn1=15309371=1530936=15309729=11160261

a8=a1·rn1=15309381=1530937=153092187=33480783

a9=a1·rn1=15309391=1530938=153096561=100442349

a10=a1·rn1=153093101=1530939=1530919683=301327047

Bakit kailangan matutuhan ito

Karaniwang ginagamit ang geometric sequences upang ipaliwanag ang mga konsepto sa matematika, pisika, inhinyeriya, biyolohiya, ekonomika, computer science, pananalapi, at higit pa, na ginagawa itong isang napakahusay na tool sa ating mga toolkit. Isa sa mga karaniwang application ng geometric sequences, halimbawa, ay ang pagkakwenta ng nakamit o hindi pa bayad na compound interest, isang aktibidad na kadalasang associated sa pananalapi na maaaring magbigay daan sa pagkakamit o pagkawala ng maraming pera! Ang iba pang mga application ay kasama, ngunit hindi lamang limitado sa, pagkakwenta ng probabilidad, pagsukat ng radioactivity sa paglipas ng panahon, at pag-design ng mga gusali.

Mga Terminolohiya at Paksa