Maglagay ng Ekwasyon o Problema
Hindi nakikita ang input ng camera!

Solusyon - Mga Geometric na Seokwens

Ang common na ratio ay: r=4
r=-4
Ang sum ng series na ito ay: s=2129920
s=-2129920
Ang pangkalahatang anyo ng series na ito ay: an=1638404n1
a_n=-163840*-4^(n-1)
Ang nth na term ng series na ito ay: 163840,655360,2621440,10485760,41943040,167772160,671088640,2684354560,10737418240,42949672960
-163840,655360,-2621440,10485760,-41943040,167772160,-671088640,2684354560,-10737418240,42949672960

Iba pang Mga Paraan para Malutas

Mga Geometric na Seokwens

Hakbang-sa-hakbang na paliwanag

1. Hanapin ang common na ratio

Hanapin ang common na ratio sa pamamagitan ng paghahati ng anumang term sa sequence sa term na nauna dito:

a2a1=655360163840=4

a3a2=2621440655360=4

Ang common na ratio (r) ng sequence ay constant at katumbas ng quotient ng dalawang sunud-sunod na terms.
r=4

2. Hanapin ang sum

5 additional steps

sn=a*((1-rn)/(1-r))

Upang mahanap ang sum ng series, ipasok ang unang term: a=-163840, ang common na ratio: r=-4, at ang bilang ng mga elemento n=3 sa geometric series sum formula:

s3=-163840*((1--43)/(1--4))

s3=-163840*((1--64)/(1--4))

s3=-163840*(65/(1--4))

s3=-163840*(65/5)

s3=16384013

s3=2129920

3. Hanapin ang pangkalahatang anyo

an=arn1

Upang mahanap ang pangkalahatang anyo ng series, ipasok ang unang term: a=163840 at ang common na ratio: r=4 sa formula para sa geometric series:

an=1638404n1

4. Hanapin ang nth na term

Gumamit ng pangkalahatang anyo para mahanap ang pang-nth na tuntunin

a1=163840

a2=a1·rn1=163840421=16384041=1638404=655360

a3=a1·rn1=163840431=16384042=16384016=2621440

a4=a1·rn1=163840441=16384043=16384064=10485760

a5=a1·rn1=163840451=16384044=163840256=41943040

a6=a1·rn1=163840461=16384045=1638401024=167772160

a7=a1·rn1=163840471=16384046=1638404096=671088640

a8=a1·rn1=163840481=16384047=16384016384=2684354560

a9=a1·rn1=163840491=16384048=16384065536=10737418240

a10=a1·rn1=1638404101=16384049=163840262144=42949672960

Bakit kailangan matutuhan ito

Karaniwang ginagamit ang geometric sequences upang ipaliwanag ang mga konsepto sa matematika, pisika, inhinyeriya, biyolohiya, ekonomika, computer science, pananalapi, at higit pa, na ginagawa itong isang napakahusay na tool sa ating mga toolkit. Isa sa mga karaniwang application ng geometric sequences, halimbawa, ay ang pagkakwenta ng nakamit o hindi pa bayad na compound interest, isang aktibidad na kadalasang associated sa pananalapi na maaaring magbigay daan sa pagkakamit o pagkawala ng maraming pera! Ang iba pang mga application ay kasama, ngunit hindi lamang limitado sa, pagkakwenta ng probabilidad, pagsukat ng radioactivity sa paglipas ng panahon, at pag-design ng mga gusali.

Mga Terminolohiya at Paksa