Maglagay ng Ekwasyon o Problema
Hindi nakikita ang input ng camera!

Solusyon - Factorials

10329978488239059262599702099394727095397746340117372869212250571234293987594703124871765375385424468563282236864226607350415360000000000000000000000
10329978488239059262599702099394727095397746340117372869212250571234293987594703124871765375385424468563282236864226607350415360000000000000000000000

Iba pang Mga Paraan para Malutas

Factorials

Hakbang-sa-hakbang na paliwanag

1. Hanapin ang paktoryal

Ang paktoryal ng 95 ay produkto ng lahat ng positibong mga integer na mas mababa o katumbas sa 95:

95!=95·94·93·92·91·90·89·88·...·7·6·5·4·3·2·1=10329978488239059262599702099394727095397746340117372869212250571234293987594703124871765375385424468563282236864226607350415360000000000000000000000

Bakit kailangan matutuhan ito

Higit na maraming paraan para ayusin ang isang deck ng mga card kaysa mga atom na nasa Earth. Sa katunayan, kung halimbawa ay itinapon mo ang isang karaniwang deck ng limampu't-dalawang mga card at ilalagay mo ito sa isang row, malamang ito ang una sa lahat ng kasaysayan ng tao na ang eksaktong ayos ay nai-layout at ang huling beses ito ay mangyayari. Ang mga ganitong higanteng mga numero ay mahirap pang tuwing naiimagine at, salamat sa mga paktoryal, hindi natin kailangang subukan ito.

Ang mga Paktoryal, na ipinahayag bilang isang buong numero na sinundan ng isang exclamation point (halimbawa: 10!), ay madalas na ginagamit sa matematika, na pangunahing upang matukoy ang bilang ng iba't ibang mga kumbinasyon, o mga pabagu-bago, magkakasama ng isang bagay. Sa ating halimbawa ng card, ang paktoryal ay magiging 52!, na pantay sa halos 8 na may 67 mga zero.
Look at the deck next time you decide to play a game of cards. Chances are you are holding something that has never existed in that exact way before and never will again.

Mga Terminolohiya at Paksa