Entrez une équation ou un problème
L’entrée caméra n’est pas reconnue !

Solution - Plus petit commun multiple (PPCM) par factorisation en nombres premiers

702
702

Explication étape par étape

1. Trouver les facteurs premiers de 9

Vue arborescente des facteurs premiers de 9: 3 et 3

Le(s) facteurs premier(s) de 9 sont 3 et 3.

2. Trouver les facteurs premiers de 6

Vue arborescente des facteurs premiers de 6: 2 et 3

Le(s) facteurs premier(s) de 6 sont 2 et 3.

3. Trouver les facteurs premiers de 27

Vue arborescente des facteurs premiers de 27: 3, 3 et 3

Le(s) facteurs premier(s) de 27 sont 3, 3 et 3.

4. Trouver les facteurs premiers de 39

Vue arborescente des facteurs premiers de 39: 3 et 13

Le(s) facteurs premier(s) de 39 sont 3 et 13.

5. Construire un tableau des facteurs premiers

Déterminer le nombre maximum de fois où chaque facteur premier (2, 3, 13) apparaît dans la factorisation des nombres donnés :

Facteur premierNombre9 6 27 39 Occurrence max.
201001
321313
1300011

Le(s) facteurs premier(s) 2 et 13 apparaissent une fois, tandis que 3 apparait plus d’une fois.

6. Calculer le PPCM

Le plus petit commun multiple est le produit de tous les facteurs dans le plus grand nombre de leur occurrence.

PPCM = 233313

PPCM = 23313

PPCM = 702

Le plus petit commun multiple de 9, 6, 27 et 39 est 702.

Pourquoi apprendre cela

Le plus petit commun multiple (PPCM) peut être utilisé pour additionner ou soustraire contrairement aux fractions, ou fractions avec différents dénominateurs, en aidant à trouver le plus petit dénominateur commun. Le PPCM est également un outil pour résoudre les problèmes écrits dans lesquels le nombre ou le montant commun le plus petit doit être trouvé parmi différentes quantités de choses.