Entrez une équation ou un problème
L’entrée caméra n’est pas reconnue !

Solution - Séquences géométriques

Le ratio commun est : r=2,6666666666666665
r=2,6666666666666665
La somme de cette série est : s=22
s=-22
La forme générale de cette série est : an=62,6666666666666665n1
a_n=-6*2,6666666666666665^(n-1)
Le nième terme de cette série est : 6,16,42,666666666666664,113,77777777777774,303,40740740740733,809,0864197530861,2157,5637860082297,5753,503429355279,15342,675811614075,40913,8021643042
-6,-16,-42,666666666666664,-113,77777777777774,-303,40740740740733,-809,0864197530861,-2157,5637860082297,-5753,503429355279,-15342,675811614075,-40913,8021643042

Autres façons de résoudre

Séquences géométriques

Explication étape par étape

1. Trouver le rapport commun

Trouver le rapport commun en divisant n’importe quel terme de la séquence par le terme précédent :

a2a1=166=2,6666666666666665

Le rapport commun (r) de la séquence est constant et est égal au quotient de deux termes consécutifs.
r=2,6666666666666665

2. Trouver la somme

5 étapes supplémentaires

sn=a*((1-rn)/(1-r))

Pour trouver la somme de la série, insérer le premier terme : a=6, le rapport commun : r=2,6666666666666665, et le nombre d'éléments n=2 dans la formule de la somme des séries géométriques :

s2=-6*((1-2,66666666666666652)/(1-2,6666666666666665))

s2=-6*((1-7,111111111111111)/(1-2,6666666666666665))

s2=-6*(-6,111111111111111/(1-2,6666666666666665))

s2=-6*(-6,111111111111111/-1,6666666666666665)

s2=63,666666666666667

s2=22

3. Trouver la forme générale

an=arn1

Pour trouver la forme générale de la série, insérer le premier terme : a=6 et rapport commun : r=2,6666666666666665 dans la formule des séries géométriques :

an=62,6666666666666665n1

4. Trouver le nième terme

Utilise la forme générale pour trouver le nième terme

a1=6

a2=a1·rn1=62,666666666666666521=62,66666666666666651=62,6666666666666665=16

a3=a1·rn1=62,666666666666666531=62,66666666666666652=67,111111111111111=42,666666666666664

a4=a1·rn1=62,666666666666666541=62,66666666666666653=618,96296296296296=113,77777777777774

a5=a1·rn1=62,666666666666666551=62,66666666666666654=650,56790123456789=303,40740740740733

a6=a1·rn1=62,666666666666666561=62,66666666666666655=6134,84773662551436=809,0864197530861

a7=a1·rn1=62,666666666666666571=62,66666666666666656=6359,59396433470494=2157,5637860082297

a8=a1·rn1=62,666666666666666581=62,66666666666666657=6958,9172382258798=5753,503429355279

a9=a1·rn1=62,666666666666666591=62,66666666666666658=62557,1126352690126=15342,675811614075

a10=a1·rn1=62,6666666666666665101=62,66666666666666659=66818,967027384034=40913,8021643042

Pourquoi apprendre cela

Les séquences géométriques sont couramment utilisées pour expliquer des concepts en mathématiques, physique, ingénierie, biologie, économie, informatique, finance, et plus encore, ce qui en fait un outil très utile à avoir dans nos trousses à outils. L'une des applications les plus courantes des séquences géométriques, par exemple, est le calcul des intérêts composés gagnés ou non payés, une activité le plus souvent associée aux finances qui pourrait signifier gagner ou perdre beaucoup d'argent! D'autres applications comprennent, mais ne sont certainement pas limitées à, le calcul de la probabilité, la mesure de la radioactivité au fil du temps, et la conception de bâtiments.