Entrez une équation ou un problème
L’entrée caméra n’est pas reconnue !

Solution - Séquences géométriques

Le ratio commun est : r=0,2
r=-0,2
La somme de cette série est : s=10400
s=10400
La forme générale de cette série est : an=125000,2n1
a_n=12500*-0,2^(n-1)
Le nième terme de cette série est : 12500,2500,500,0000000000001,100,00000000000003,20,000000000000004,4,000000000000001,0,8000000000000003,0,16000000000000006,0,032000000000000015,0,006400000000000003
12500,-2500,500,0000000000001,-100,00000000000003,20,000000000000004,-4,000000000000001,0,8000000000000003,-0,16000000000000006,0,032000000000000015,-0,006400000000000003

Autres façons de résoudre

Séquences géométriques

Explication étape par étape

1. Trouver le rapport commun

Trouver le rapport commun en divisant n’importe quel terme de la séquence par le terme précédent :

a2a1=250012500=0,2

a3a2=5002500=0,2

a4a3=100500=0,2

Le rapport commun (r) de la séquence est constant et est égal au quotient de deux termes consécutifs.
r=0,2

2. Trouver la somme

5 étapes supplémentaires

sn=a*((1-rn)/(1-r))

Pour trouver la somme de la série, insérer le premier terme : a=12500, le rapport commun : r=0,2, et le nombre d'éléments n=4 dans la formule de la somme des séries géométriques :

s4=12500*((1--0,24)/(1--0,2))

s4=12500*((1-0,0016000000000000003)/(1--0,2))

s4=12500*(0,9984/(1--0,2))

s4=12500*(0,9984/1,2)

s4=125000832

s4=10400

3. Trouver la forme générale

an=arn1

Pour trouver la forme générale de la série, insérer le premier terme : a=12500 et rapport commun : r=0,2 dans la formule des séries géométriques :

an=125000,2n1

4. Trouver le nième terme

Utilise la forme générale pour trouver le nième terme

a1=12500

a2=a1·rn1=125000,221=125000,21=125000,2=2500

a3=a1·rn1=125000,231=125000,22=125000,04000000000000001=500,0000000000001

a4=a1·rn1=125000,241=125000,23=125000,008000000000000002=100,00000000000003

a5=a1·rn1=125000,251=125000,24=125000,0016000000000000003=20,000000000000004

a6=a1·rn1=125000,261=125000,25=125000,0003200000000000001=4,000000000000001

a7=a1·rn1=125000,271=125000,26=125006,400000000000002E05=0,8000000000000003

a8=a1·rn1=125000,281=125000,27=125001,2800000000000005E05=0,16000000000000006

a9=a1·rn1=125000,291=125000,28=125002,5600000000000013E06=0,032000000000000015

a10=a1·rn1=125000,2101=125000,29=125005,120000000000002E07=0,006400000000000003

Pourquoi apprendre cela

Les séquences géométriques sont couramment utilisées pour expliquer des concepts en mathématiques, physique, ingénierie, biologie, économie, informatique, finance, et plus encore, ce qui en fait un outil très utile à avoir dans nos trousses à outils. L'une des applications les plus courantes des séquences géométriques, par exemple, est le calcul des intérêts composés gagnés ou non payés, une activité le plus souvent associée aux finances qui pourrait signifier gagner ou perdre beaucoup d'argent! D'autres applications comprennent, mais ne sont certainement pas limitées à, le calcul de la probabilité, la mesure de la radioactivité au fil du temps, et la conception de bâtiments.