Entrez une équation ou un problème
L’entrée caméra n’est pas reconnue !

Solution - Séquences géométriques

Le ratio commun est : r=0,14285714285714285
r=-0,14285714285714285
La somme de cette série est : s=215
s=215
La forme générale de cette série est : an=2450,14285714285714285n1
a_n=245*-0,14285714285714285^(n-1)
Le nième terme de cette série est : 245,35,5,0,7142857142857142,0,10204081632653059,0,014577259475218655,0,0020824656393169504,0,0002974950913309929,4,2499298761570416E05,6,071328394510059E06
245,-35,5,-0,7142857142857142,0,10204081632653059,-0,014577259475218655,0,0020824656393169504,-0,0002974950913309929,4,2499298761570416E-05,-6,071328394510059E-06

Autres façons de résoudre

Séquences géométriques

Explication étape par étape

1. Trouver le rapport commun

Trouver le rapport commun en divisant n’importe quel terme de la séquence par le terme précédent :

a2a1=35245=0,14285714285714285

a3a2=535=0,14285714285714285

Le rapport commun (r) de la séquence est constant et est égal au quotient de deux termes consécutifs.
r=0,14285714285714285

2. Trouver la somme

5 étapes supplémentaires

sn=a*((1-rn)/(1-r))

Pour trouver la somme de la série, insérer le premier terme : a=245, le rapport commun : r=0,14285714285714285, et le nombre d'éléments n=3 dans la formule de la somme des séries géométriques :

s3=245*((1--0,142857142857142853)/(1--0,14285714285714285))

s3=245*((1--0,0029154518950437313)/(1--0,14285714285714285))

s3=245*(1,0029154518950438/(1--0,14285714285714285))

s3=245*(1,0029154518950438/1,1428571428571428)

s3=2450,8775510204081634

s3=215,00000000000003

3. Trouver la forme générale

an=arn1

Pour trouver la forme générale de la série, insérer le premier terme : a=245 et rapport commun : r=0,14285714285714285 dans la formule des séries géométriques :

an=2450,14285714285714285n1

4. Trouver le nième terme

Utilise la forme générale pour trouver le nième terme

a1=245

a2=a1·rn1=2450,1428571428571428521=2450,142857142857142851=2450,14285714285714285=35

a3=a1·rn1=2450,1428571428571428531=2450,142857142857142852=2450,02040816326530612=5

a4=a1·rn1=2450,1428571428571428541=2450,142857142857142853=2450,0029154518950437313=0,7142857142857142

a5=a1·rn1=2450,1428571428571428551=2450,142857142857142854=2450,00041649312786339016=0,10204081632653059

a6=a1·rn1=2450,1428571428571428561=2450,142857142857142855=2455,949901826619859E05=0,014577259475218655

a7=a1·rn1=2450,1428571428571428571=2450,142857142857142856=2458,499859752314083E06=0,0020824656393169504

a8=a1·rn1=2450,1428571428571428581=2450,142857142857142857=2451,214265678902012E06=0,0002974950913309929

a9=a1·rn1=2450,1428571428571428591=2450,142857142857142858=2451,7346652555743026E07=4,2499298761570416E05

a10=a1·rn1=2450,14285714285714285101=2450,142857142857142859=2452,4780932222490035E08=6,071328394510059E06

Pourquoi apprendre cela

Les séquences géométriques sont couramment utilisées pour expliquer des concepts en mathématiques, physique, ingénierie, biologie, économie, informatique, finance, et plus encore, ce qui en fait un outil très utile à avoir dans nos trousses à outils. L'une des applications les plus courantes des séquences géométriques, par exemple, est le calcul des intérêts composés gagnés ou non payés, une activité le plus souvent associée aux finances qui pourrait signifier gagner ou perdre beaucoup d'argent! D'autres applications comprennent, mais ne sont certainement pas limitées à, le calcul de la probabilité, la mesure de la radioactivité au fil du temps, et la conception de bâtiments.