הזן משוואה או בעיה
קלט המצלמה אינו מזוהה!

פִּתָרוֹן - רצפים גאומטריים

השיעור המשותף הוא: r=10.181818181818182
r=10.181818181818182
סכום סדרה זו הוא: s=123
s=‎-123
הצורה הכללית של סדרה זו היא: an=1110.181818181818182n1
a_n=‎-11*10.181818181818182^(n-1)
המונח ה-n של סדרה זו הוא: 11,112,1140.3636363636363,11610.975206611569,118220.83846731781,1203703.0825763266,12255885.931686236,124787202.21353258,1270560604.355968,12936617062.533493
‎-11,‎-112,‎-1140.3636363636363,‎-11610.975206611569,‎-118220.83846731781,‎-1203703.0825763266,‎-12255885.931686236,‎-124787202.21353258,‎-1270560604.355968,‎-12936617062.533493

דרכים אחרות לפתרון

רצפים גאומטריים

הסבר שלב אחר שלב

1. מצא את השיעור המשותף

מצא את השיעור המשותף על ידי חלוקה של כל מונח בסדרה במונח הבא לפניו:

a2a1=11211=10.181818181818182

השיעור המשותף (r) של הרצף הוא קבוע והוא שווה למנה של שני מונחים עוקבים.
r=10.181818181818182

2. מצא את הסכום

5 צעדים נוספים

sn=a*((1-rn)/(1-r))

בכדי למצוא את סכום הסדרה, הכנס את המונח הראשון: a=11 את השיעור המשותף: r=10.181818181818182 ואת מספר האלמנטים n=2 אל תוך נוסחת סכום הסדרה הגאומטרית:

s2=-11*((1-10.1818181818181822)/(1-10.181818181818182))

s2=-11*((1-103.6694214876033)/(1-10.181818181818182))

s2=-11*(-102.6694214876033/(1-10.181818181818182))

s2=-11*(-102.6694214876033/-9.181818181818182)

s2=1111.181818181818182

s2=123

3. מצא את הצורה הכללית

an=arn1

בכדי למצוא את הצורה הכללית של הסדרה, הכנס את המונח הראשון: a=11 ואת השיעור המשותף: r=10.181818181818182 אל תוך נוסחת הסדרה הגאומטרית:

an=1110.181818181818182n1

4. מצא את המונח ה-n

השתמש בצורה הכללית בכדי למצוא את המונח ה-n

a1=11

a2=a1·rn1=1110.18181818181818221=1110.1818181818181821=1110.181818181818182=112

a3=a1·rn1=1110.18181818181818231=1110.1818181818181822=11103.6694214876033=1140.3636363636363

a4=a1·rn1=1110.18181818181818241=1110.1818181818181823=111055.5432006010517=11610.975206611569

a5=a1·rn1=1110.18181818181818251=1110.1818181818181824=1110747.348951574346=118220.83846731781

a6=a1·rn1=1110.18181818181818261=1110.1818181818181825=11109427.55296148424=1203703.0825763266

a7=a1·rn1=1110.18181818181818271=1110.1818181818181826=111114171.4483351123=12255885.931686236

a8=a1·rn1=1110.18181818181818281=1110.1818181818181827=1111344291.110321144=124787202.21353258

a9=a1·rn1=1110.18181818181818291=1110.1818181818181828=11115505509.48690619=1270560604.355968

a10=a1·rn1=1110.181818181818182101=1110.1818181818181829=111176056096.5939538=12936617062.533493

מדוע ללמוד את זה

רצפים גיאומטריים משמשים לעיתים קרובות להסביר מושגים במתמטיקה, פיזיקה, הנדסה, ביולוגיה, כלכלה, מדעי המחשב, אובליזימוס, ועוד, מה שהופך אותם לכלי שימושי מאוד בערכת הכלים שלנו. אחת היישומים הנפוצים ביותר של רצפים גיאומטריים, לדוגמא, היא חישוב ריבית מורכבת שנצברה או שלא שולמה, פעילות הקשורה בעיקר לאובליזימוס שעלולה להוביל להרוויח או לאבד הרבה כסף! יישומים אחרים כוללים, אך לא מוגבלים אלה, חישוב סיכויים, מדידת רדיואקטיביות לאורך הזמן, ותכנון מבנים.

מונחים ונושאים