एक समीकरण या समस्या दर्ज करें
कैमरा इनपुट की पहचान नहीं की जा सकी!

समाधान - न्यूनतम सामान्य गुणज (LCM) प्रधान गुणनखण्ड द्वारा

3,780
3,780

चरण-दर-चरण समाधान

1. 42 के प्रधान गुणनांकों को खोजें

42 के प्रधान गुणनकों का वृक्ष दृश्य:  2 , 3  और  7

42 के प्रधान गुणनकों हैं 2 , 3 और 7 ।

2. 60 के प्रधान गुणनांकों को खोजें

60 के प्रधान गुणनकों का वृक्ष दृश्य:  2 , 2 , 3  और  5

60 के प्रधान गुणनकों हैं 2 , 2 , 3 और 5 ।

3. 84 के प्रधान गुणनांकों को खोजें

84 के प्रधान गुणनकों का वृक्ष दृश्य:  2 , 2 , 3  और  7

84 के प्रधान गुणनकों हैं 2 , 2 , 3 और 7 ।

4. 108 के प्रधान गुणनांकों को खोजें

108 के प्रधान गुणनकों का वृक्ष दृश्य:  2 , 2 , 3 , 3  और  3

108 के प्रधान गुणनकों हैं 2 , 2 , 3 , 3 और 3 ।

5. एक प्रधान गुणनक सारणी बनाएं

निर्धारित करें कि प्रत्येक प्रधान गुणनक ( 2 , 3 , 5 , 7 ) दिए गए संख्याओं के क्या अपवर्तन में अधिकतम बार होता है:

प्रधान गुणनकसंख्या42 60 84 108 अधिकतम. घटना
212222
311133
501001
710101

प्राइम पद फैक्टर्स 5 और 7 एक बार आते हैं, जबकि 2 और 3 आता है एक से अधिक बार।

6. LCM की गणना करें

न्यूनतम सामान्य गुणनखंड सभी फैक्टर्स का उत्पाद है जो कि उनकी सबसे अधिक उपस्थिति में होता है।

LCM = 2233357

LCM = 223357

LCM = 3,780

42, 60, 84 और 108 का न्यूनतम सामान्य गुणनखंड 3,780 है।

इसे सीखने की क्यों जरूरत है

न्यूनतम सामान्य गुणनक (लसीएम), कभी-कभी न्यूनतम सामान्य गुणनक या न्यूनतम सामान्य भाजक के रूप में भी कहा जाता है, संख्याओं के बीच सम्बंधों को समझने के लिए उपयोगी होता है। उदाहरण के लिए, यदि पृथ्वी को सूर्य के चक्कर लगाने में 365 दिन लगते हैं और शुक्र को सूर्य के चक्कर लगाने में 225 दिन लगते हैं और दोनों इस संरचना को देने के समय संपूर्ण संरेखण में हैं, तो पृथ्वी और शुक्र को फिर से संरेखित करने में कितना समय लगेगा? हम इसका उत्तर 16,425 दिन होगा, यह निर्धारित करने के लिए लसीएम का उपयोग कर सकते हैं।

एलसीएम बहुत अन्य गणितीय अवधारणाओं का भी एक बहुत महत्वपूर्ण हिस्सा है जिनमें वास्तविक दुनिया के अनुप्रयोग भी होते हैं। उदाहरण के लिए, हम भिन्नों को जोड़ने और घटाने के समय एलसीएम्स का उपयोग करते हैं, जिसका हम बहुत अक्सर उपयोग करते हैं।