एक समीकरण या समस्या दर्ज करें
कैमरा इनपुट की पहचान नहीं की जा सकी!

समाधान - फैक्टोरियल

213455108077438865629072570145733886730056159330291227886899710221263324938130981514753340236723864719151973034287306573083301055694802251980973629541579310661401455397074590303866009781148657954570396550703618437210885875866741044575478989978191912006970522334798649753600000000000000000000000000000000000000000
213455108077438865629072570145733886730056159330291227886899710221263324938130981514753340236723864719151973034287306573083301055694802251980973629541579310661401455397074590303866009781148657954570396550703618437210885875866741044575478989978191912006970522334798649753600000000000000000000000000000000000000000

समाधान के अन्य तरीके

फैक्टोरियल

चरण-दर-चरण समाधान

1. क्रमगुणन (factorial) खोजिए

172 का क्रमगुणन सभी सकारात्मक पूर्णांकों का उत्पाद होता है जो 172 से कम अथवा बराबर होता है:

172!=172·171·170·169·168·167·166·165·...·7·6·5·4·3·2·1=213455108077438865629072570145733886730056159330291227886899710221263324938130981514753340236723864719151973034287306573083301055694802251980973629541579310661401455397074590303866009781148657954570396550703618437210885875866741044575478989978191912006970522334798649753600000000000000000000000000000000000000000

इसे सीखने की क्यों जरूरत है

पृथ्वी पर परमाणु से अधिक तरीके हैं जिससे एक ताश के पत्ते का व्यवस्थान किया जा सकता है। वास्तव में, यदि आप एक मानक ताश के बाईस पत्तों को बचताव करें और उन्हें एक पंक्ति में रखें, तो शायद यह सभी मानव इतिहास में पहली बार होगा कि उस व्यवस्थित व्यवस्था को ले गया गया है और यह अंतिम समय होगा। ऐसे विशाल संख्याओं को कल्पना करना कठिन होता है और, धन्यवाद हो क्रमगुणन का, हमें कोशिश नहीं करने की जरूरत है।

क्रमगुणन, जो एक पूरे संख्या के बाद एक विस्मयाधिबोधक चिह्न (उदाहरण: 10!) से व्यक्त किया जाता है, गणित में अक्सर उपयोग होता है, अधिकांशतः चीजों के सेट के विभिन्न संयोजनों, या सम्पर्याय, की संख्या का निर्धारण करने के लिए। हमारी कार्ड उदाहरण में, क्रमगुणन 52! होगा, जो करीब 8 के साथ 67 शून्य के बराबर होता है।
अगली बार जब आप कार्ड के खेल का निर्णय लें तो डेक को देखें। संभावना है कि आप कुछ हाथ में पकड़ रहे होंगे जो कभी उस विशिष्ट तरीके से मौजूद नहीं था और फिर कभी नहीं होगा।

शब्द और विषय