एक समीकरण या समस्या दर्ज करें
कैमरा इनपुट की पहचान नहीं की जा सकी!

समाधान - ज्यामितीय श्रृंखलाएं

सामान्य अनुपात है: r=4
r=-4
इस श्रृंखला का योग है: s=26
s=26
इस श्रृंखला का सामान्य स्वरूप है: an=24n1
a_n=2*-4^(n-1)
इस श्रृंखला का nth अवधि है: 2,8,32,128,512,2048,8192,32768,131072,524288
2,-8,32,-128,512,-2048,8192,-32768,131072,-524288

समाधान के अन्य तरीके

ज्यामितीय श्रृंखलाएं

चरण-दर-चरण समाधान

1. सामान्य अनुपात का पता लगाएं

किसी भी पद को उस पद से विभाजित करके सामान्य अनुपात का पता लगाएं, जो इससे पहले आता है:

a2a1=82=4

a3a2=328=4

अनुक्रम का सामान्य अनुपात ( r ) स्थिर होता है और दो क्रमागत शब्दों के भाग के बराबर होता है।
r=4

2. योग खोजें

5 अतिरिक्त steps

sn=a*((1-rn)/(1-r))

श्रृंखला का योग खोजने के लिए, पहले पद: a=2, सामान्य अनुपात: r=4, और तत्वों की संख्या n=3 को ज्यामितीय श्रृंखला के योग सूत्र में डालें:

s3=2*((1--43)/(1--4))

s3=2*((1--64)/(1--4))

s3=2*(65/(1--4))

s3=2*(65/5)

s3=213

s3=26

3. आम रूप खोजें

an=arn1

श्रृंखला के आम रूप का पता लगाने के लिए, पहले पद: a=2 और सामान्य अनुपात: r=4 को ज्यामितीय श्रृंखला के सूत्र में डालें:

an=24n1

4. नth अवधि का पता लगाएँ

सामान्य रूप का उपयोग करके nth पद का पता लगाएँ

a1=2

a2=a1·rn1=2421=241=24=8

a3=a1·rn1=2431=242=216=32

a4=a1·rn1=2441=243=264=128

a5=a1·rn1=2451=244=2256=512

a6=a1·rn1=2461=245=21024=2048

a7=a1·rn1=2471=246=24096=8192

a8=a1·rn1=2481=247=216384=32768

a9=a1·rn1=2491=248=265536=131072

a10=a1·rn1=24101=249=2262144=524288

इसे सीखने की क्यों जरूरत है

ज्यामितीय अनुक्रम साधारणतया गणित, भौतिकी, इंजीनियरिंग, जीवविज्ञान, अर्थशास्त्र, कंप्यूटर विज्ञान, वित्त, और अधिक में अवधारणाओं को समझाने के लिए उपयोग किया जाता है, इसलिए यह हमारे उपकरणकिट में एक बहुत ही उपयोगी उपकरण होता है। ज्यामितीय अनुक्रमों के सबसे सामान्य उपयोगों में से एक, उदाहरण के लिए, वित्त से सबसे अधिक जुड़े कम्पाउंड ब्याज की अदा करी या अनपैद की गई गणना करना होता है, जो बहुत सारे पैसे कमा या खोने का मतलब हो सकता है! अन्य उपयोगों में शामिल हैं, परन्तु केवल विनिर्दिष्ट नहीं होते, संभावना की गणना करना, समय के साथ बिराजमानता मापना, और भवनों का डिजाइन करना।