Masukkan persamaan atau soal
Input kamera tidak dikenali!

Solusi - Barisan Geometri

Rasio umumnya adalah: r=1,2
r=1,2
Jumlah dari deret geometri ini adalah: s=11
s=-11
Bentuk umum dari deret geometri ini adalah: an=51,2n1
a_n=-5*1,2^(n-1)
Suku ke-n dari deret geometri ini adalah: 5,6,7,199999999999999,8,639999999999999,10,367999999999999,12,441599999999998,14,929919999999996,17,915903999999998,21,49908479999999,25,798901759999993
-5,-6,-7,199999999999999,-8,639999999999999,-10,367999999999999,-12,441599999999998,-14,929919999999996,-17,915903999999998,-21,49908479999999,-25,798901759999993

Cara Lain untuk Mengatasinya

Barisan Geometri

Penjelasan langkah demi langkah

1. Tentukan rasio umum

Tentukan rasio umum dengan membagi setiap suku dalam barisan dengan suku sebelumnya:

a2a1=65=1,2

Rasio umum (r) dari barisan geometri bersifat konstan dan sama dengan hasil bagi dua suku berurutan.
r=1,2

2. Tentukan jumlah

5 tambahan langkah

sn=a*((1-rn)/(1-r))

Untuk menentukan jumlah deret, masukkan suku pertama: a=5, rasio umum: r=1,2, dan jumlah elemen n=2 ke dalam rumus jumlah deret geometri:

s2=-5*((1-1,22)/(1-1,2))

s2=-5*((1-1,44)/(1-1,2))

s2=-5*(-0,43999999999999995/(1-1,2))

s2=-5*(-0,43999999999999995/-0,19999999999999996)

s2=52,2

s2=11

3. Tentukan bentuk umum

an=arn1

Untuk menentukan bentuk umum deret, masukkan suku pertama: a=5 dan rasio umum: r=1,2 ke dalam rumus deret geometri:

an=51,2n1

4. Tentukan suku ke-n

Gunakan bentuk umum untuk menentukan suku ke-n

a1=5

a2=a1·rn1=51,221=51,21=51,2=6

a3=a1·rn1=51,231=51,22=51,44=7,199999999999999

a4=a1·rn1=51,241=51,23=51,7279999999999998=8,639999999999999

a5=a1·rn1=51,251=51,24=52,0736=10,367999999999999

a6=a1·rn1=51,261=51,25=52,4883199999999994=12,441599999999998

a7=a1·rn1=51,271=51,26=52,9859839999999993=14,929919999999996

a8=a1·rn1=51,281=51,27=53,583180799999999=17,915903999999998

a9=a1·rn1=51,291=51,28=54,2998169599999985=21,49908479999999

a10=a1·rn1=51,2101=51,29=55,1597803519999985=25,798901759999993

Alasan mempelajari materi ini

Les séquences géométriques sont couramment utilisées pour expliquer des concepts en mathématiques, physique, ingénierie, biologie, économie, informatique, finance, et plus encore, ce qui en fait un outil très utile à avoir dans nos trousses. Une des applications les plus communes des séquences géométriques, par exemple, est le calcul des intérêts composés gagnés ou non payés, une activité généralement associée à la finance qui pourrait signifier gagner ou perdre beaucoup d'argent ! D'autres applications incluent, mais ne sont certainement pas limitées à, le calcul de probabilités, la mesure de la radioactivité au fil du temps, et la conception de bâtiments.

Istilah dan topik