Masukkan persamaan atau soal
Input kamera tidak dikenali!

Solusi - Derivatif

-sin(x)cos(x)
- \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

Cara Lain untuk Mengatasinya

Derivatif

Penjelasan langkah demi langkah

1. Selesaikan turunan

2 tambahan langkah

Menghitung turunan dari fungsi logaritma menggunakan aturan rantai.

ddx[ln(cos(x))]=1cos(x)×ddx[cos(x)]

Mendekomposisi fungsi untuk aturan rantai.

ddx[ln(cos(x))]=ddx[ln(x)]×ddx[cos(x)]

Menghitung turunan dari fungsi logaritma alami.

ddx[ln(x)]×ddx[cos(x)]=1x×ddx[cos(x)]

Menggantikan variabel kembali ke dalam fungsi.

1x×ddx[cos(x)]=1cos(x)×ddx[cos(x)]

Menghitung turunan dari fungsi kosinus.

1cos(x)×ddx[cos(x)]=1cos(x)×(-sin(x))

Menyederhanakan ekspresi aritmatika.

1cos(x)×(-sin(x))=-sin(x)cos(x)

Alasan mempelajari materi ini

Ever wondered how to predict the future? Derivatives are your crystal ball!

Picture this: You're a surfer trying to catch the biggest wave. How do you know when it's coming? Derivatives can tell you when it's at its highest point!

Rocket Science: Planning to launch a rocket to Mars? Derivatives tell us the optimal fuel burn rate to minimize fuel consumption and maximize distance!

Stock Market: Trading in the stock market? Derivatives can indicate the rate at which stock prices are changing, helping predict the best time to buy or sell.

Animation: Love animated movies? Artists use derivatives to smoothly change the motion and expressions of characters, making them feel more lifelike.

Engineering: Designing a bridge or a skyscraper? Derivatives help determine the rates of stress and strain changes in materials, ensuring the safety of your structures.

In short, derivatives are like a secret code to understanding change and making predictions in real life. So let's crack this code together and become masters of our futures!

Istilah dan topik