Digita un'equazione o un problema
L'input della fotocamera non viene riconosciuto!

Soluzione - Sequenze geometriche

Il rapporto comune è: r=1,0689655172413792
r=-1,0689655172413792
La somma di questa serie è: s=1
s=-1
La forma generale di questa serie è: an=291,0689655172413792n1
a_n=29*-1,0689655172413792^(n-1)
L'n-esimo termine di questa serie è: 29,30,999999999999996,33,137931034482754,35,42330558858501,37,86629218090121,40,47776060717026,43,26933030421648,46,25342204933486,49,443313225151044,52,85319689585112
29,-30,999999999999996,33,137931034482754,-35,42330558858501,37,86629218090121,-40,47776060717026,43,26933030421648,-46,25342204933486,49,443313225151044,-52,85319689585112

Altri modi per risolvere

Sequenze geometriche

Spiegazione passo passo

1. Calcola il rapporto comune

Calcola il rapporto comune dividendo ogni termine della sequenza per il termine che lo segue:

a2a1=3129=1,0689655172413792

Il rapporto comune (r) della sequenza è costante e uguale al quoziente di due termini consecutivi.
r=1,0689655172413792

2. Calcola la somma

5 passaggi aggiuntivi

sn=a*((1-rn)/(1-r))

Per calcolare la somma della serie, inserisci il primo termine: a=29, il rapporto comune: r=1,0689655172413792, e il numero di elementi n=2 nella formula della somma della serie geometrica:

s2=29*((1--1,06896551724137922)/(1--1,0689655172413792))

s2=29*((1-1,1426872770511294)/(1--1,0689655172413792))

s2=29*(-0,14268727705112938/(1--1,0689655172413792))

s2=29*(-0,14268727705112938/2,068965517241379)

s2=290,06896551724137921

s2=1,9999999999999971

3. Calcola la forma generale

an=arn1

Per calcolare la forma generale della serie, inserisci il primo termine: a=29 e il rapporto comune: r=1,0689655172413792 nella formula per le serie geometriche:

an=291,0689655172413792n1

4. Calcola l'n-esimo termine

Usa la forma generale per calcolare l'n-esimo termine

a1=29

a2=a1·rn1=291,068965517241379221=291,06896551724137921=291,0689655172413792=30,999999999999996

a3=a1·rn1=291,068965517241379231=291,06896551724137922=291,1426872770511294=33,137931034482754

a4=a1·rn1=291,068965517241379241=291,06896551724137923=291,2214932961581038=35,42330558858501

a5=a1·rn1=291,068965517241379251=291,06896551724137924=291,3057342131345246=37,86629218090121

a6=a1·rn1=291,068965517241379261=291,06896551724137925=291,3957848485231124=40,47776060717026

a7=a1·rn1=291,068965517241379271=291,06896551724137926=291,492045872559189=43,26933030421648

a8=a1·rn1=291,068965517241379281=291,06896551724137927=291,5949455879080985=46,25342204933486

a9=a1·rn1=291,068965517241379291=291,06896551724137928=291,704941835350036=49,443313225151044

a10=a1·rn1=291,0689655172413792101=291,06896551724137929=291,822524030891418=52,85319689585112

Perché imparare questo

Las secuencias geométricas se utilizan comúnmente para explicar conceptos en matemáticas, física, ingeniería, biología, economía, informática, finanzas y más, lo que las convierte en una herramienta muy útil para tener en nuestras cajas de herramientas. Una de las aplicaciones más comunes de las secuencias geométricas, por ejemplo, es el cálculo de interés compuesto ganado o no pagado, una actividad más comúnmente asociada con las finanzas que podría significar ganar o perder mucho dinero! Otras aplicaciones incluyen, pero ciertamente no se limitan a, calcular la probabilidad, medir la radiactividad con el tiempo y diseñar edificios.

Termini e argomenti